Part Number Hot Search : 
MAX9273 Q6270 TIC201N TPD4144K KNP50S B0322AB1 UF15004 BZQ55C16
Product Description
Full Text Search
 

To Download FZ06BIA045FH Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  FZ06BIA045FH preliminary datasheet flowsol 0 bi 600v/35a high efficiency ultra fast switching frequency low inductive design sic in boost and h bridge transformerless solar inverters FZ06BIA045FH tj=25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 600 v t h =80c 36 t c =80c 49 t h =80c 42 t c =80c 63 maximum junction temperature t j max 150 c input boost mosfet v ds 600 v t h =80c 30 t c =80c 37 t h =80c 92 t c =80c 139 t j max 150 c maximum junction temperature i d v gs bypass fwd pulsed drain current forward current per fwd surge forward current dc drain current power dissipation per fwd dc current p tot i 2 t v a w a a i dpulse gate-source peak voltage drain to source breakdown voltage t j =t j max 20 w t j =t j max t p limited by t j max a types i2t-value maximum ratings i fav a 2 s i fsm condition features flow0 housing target applications schematic 360 t j =25c t j =t j max t p =10ms 370 power dissipation p tot 230 1 revision: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition input boost fwd t h =80c 19 t c =80c 23 t h =80c 41 t c =80c 62 buck fwd t h =80c 10 t c =80c 15 t h =80c 29 t c =80c 44 buck mosfet t h =80c 30 t c =80c 37 t h =80c 94 t c =80c 142 boost igbt t h =80c 40 t c =80c 40 t h =80c 86 t c =80c 131 t sc t j 150c 6 s v cc v ge =15v 360 v tc=25c 230 600 150 20 t j =t j max v rrm 600 dc forward current a t j =t j max t p limited by t j max a i f t c =100c 35 i frm t j =t j max peak repetitive reverse voltage repetitive peak forward current v rrm t j max p tot power dissipation peak repetitive reverse voltage dc forward current i frm maximum junction temperature i f w v a dc drain current i d t j max repetitive peak forward current drain to source breakdown voltage v ds power dissipation per fwd p tot pulsed drain current i dpulse p tot gate-source peak voltage vgs maximum junction temperature power dissipation t j max t j =t j max i c v ge t j =t j max t j max p tot a v v c v w 150 20 175 a 600 c 175 maximum junction temperature c t p limited by t j max w 600 t j =t j max a t j =t j max collector-emitter break down voltage repetitive peak collector current gate-emitter peak voltage v ce i cpuls maximum junction temperature t p limited by t j max short circuit ratings dc collector current power dissipation per igbt v a v c w a 70 175 t j =25c t j =t j max t j =25c t p limited by t j max 2 revi sion: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm clearance insulation voltage creepage distance t op operation temperature under switching condition -40?+(tjmax - 25) c storage temperature t stg -40?+125 c 3 revi sion: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max t j =25c 0,7 1,01 1,3 t j =125c 0,93 t j =25c 0,86 t j =125c 0,75 t j =25c 0,01 t j =125c 0,01 t j =25c 0,05 t j =125c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 1,68 k/w t j =25c 0,04 t j =125c 0,09 t j =25c 2,1 3 3,9 t j =125c t j =25c 200 t j =125c t j =25c 25000 t j =125c t j =25c 28 t j =125c 27 t j =25c 5 t j =125c 6 t j =25c 154 t j =125c 167 t j =25c 10 t j =125c 9 t j =25c 0,063 t j =125c 0,072 t j =25c 0,025 t j =125c 0,025 t j =25c 150 190 t j =125c t j =25c t j =125c t j =25c t j =125c tj=25c 1 1,54 1,8 t j =150c 1,71 t j =25c 400 t j =150c t j =25c 16,63 t j =150c 14,68 t j =25c 9,3 t j =150c 10,4 t j =25c 0,058 t j =150c 0,064 t j =25c 0,005 t j =150c 0,006 di ( rec ) max t j =25c 4244 /d t t j =150c 2752 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 2,34 k/w k/w i gss na v 0,003 v (gs)th ns pf a/ s mws v mws c a nc a ns ? 320 6800 51 1200 15 10 reverse leakage current peak recovery current reverse recovery charge reverse recovery time peak rate of fall of recovery current input boost fwd reverse recovered energy e off static drain to source on resistance 400 600 zero gate voltage drain current t d(off) turn on delay time rise time rgon=4 ? q g 15 tj=25c 34 na 400 10 48 0 100 44 44 reverse current v v ? ma 15 characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) s olar invert e v to r t bypass fwd thermal resistance chip to heatsink per chip 0,76 thermal grease thickness 50um  = 1 w/mk c iss r thjh c oss c rss value conditions 0 t r t d(on) i dss i r rgoff=4 ? vgs=vds input boost mosfet reverse transfer capacitance gate to source charge turn-on energy loss per pulse output capacitance gate to drain charge total gate charge gate threshold voltage gate to source leakage current turn off delay time forward voltage v f e rec i rrm i rm q rr t rr t f fall time turn-off energy loss per pulse input capacitance e on q gs q gd r ds(on) 20 10 0 f=1mhz rgon=4 ? 10 rgon=4 ? 10 400 400 15 16 4 revisio n: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value conditions t j =25c 1 1,52 1,8 t j =150c 1,64 t j =25c 14 t j =150c 12 t j =25c 7,8 t j =150c 8,8 t j =25c 0,05 t j =150c 0,05 di ( rec ) max t j =25c 4078 /d t t j =150c 3373 t j =25c 0,008 t j =150c 0,007 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 3,28 k/w t j =25c 45 t j =125c 89 t j =25c 2,1 3 3,9 t j =125c t j =25c 200 t j =125c t j =25c 25000 t j =125c t j =25c 31 t j =125c 30 t j =25c 5,4 t j =125c 6 t j =25c 147 t j =125c 158 t j =25c 13,7 t j =125c 10,3 t j =25c 0,063 t j =125c 0,067 t j =25c 0,021 t j =125c 0,028 k/w tj=25c 190 tj=25c 150 51 320 34 na ns a v nc na total gate charge reverse transfer capacitance thermal resistance chip to heatsink per chip buck fwd input capacitance gate to source leakage current turn on delay time t f output capacitance turn-on energy loss per pulse 15 turn off delay time rise time gate to drain charge gate to source charge turn-off energy loss per pulse fall time rgon=4 ? 0,75 pf ns 48 mws 6800 v c mws a/ s m ? buck mosfet reverse recovery time reverse recovered energy peak rate of fall of recovery current fwd forward voltage gate threshold voltage e off c iss c oss q gs peak reverse recovery current zero gate voltage drain current i dss static drain to source on resistance i rrm reverse recovered charge erec v f r thjh c rss v (gs)th i gss t r t d(off) e on q gd q g q rr t rr t d(on) r ds(on) rgoff=4 ? thermal grease thickness 50um  = 1 w/mk 10 10 10 10 0 rgon=4 ? f=1mhz 0 400 20 100 400 44 400 44 0 v ds =v gs 15 8 0,003 600 5 revisio n: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value conditions t j =25c 5 5,8 6,5 t j =150c t j =25c 1,18 t j =150c 1,21 t j =25c 0,2 t j =150c t j =25c 650 t j =150c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um  = 1 w/mk 1,10 k/w note: for the boost igbt only lf switching allowed r 25 tj=25c 17,5 22 29,0 k ? r 100 tol. 5% 1486 ? * see details on thermistor charts on figure 2. none 200 3140 310 tj=25c tj=25c 25 50 0,0008 20 15 0 ma na v v i ges v ce =v ge f=1mhz c oss c rss 600 r gint power dissipation p rated resistance* thermistor b-value b (25/100) tol. 3% mw 210 15 nc 50 k 0 ? tj=25c i ces v ge(th) v ce(sat) c ies 480 reverse transfer capacitance 0 gate charge input capacitance output capacitance collector-emitter saturation voltage collector-emitter cut-off incl fwd integrated gate resistor q gate boost igbt gate-emitter leakage current gate emitter threshold voltage 93 tj=25c 4000 pf 6 revisio n: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 1 mosfet figure 2 mosfet typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 4 v to 14 v in steps of 1 v v ge from 4 v to 14 v in steps of 1 v figure 3 mosfet figure 4 fred typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v buck typical output characteristics 0 20 40 60 80 100 012345 v ce (v) i c (a) 0 10 20 30 40 50 0123456 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 0 0,8 1,6 2,4 3,2 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 012345 v ce (v) i c (a) 7 revis ion: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 5 mosfet figure 6 mosfet typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 400 v v ce = 400 v v ge = 10 v v ge = 10 v r gon = 4 ? i c = 15 a r goff = 4 ? figure 7 fred figure 8 fred typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 400 v v ce = 400 v v ge = 10 v v ge = 10 v r gon = 4 ? i c = 15 a buck e on high t e off high t e on low t e off low t 0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14 0,16 0 5 10 15 20 25 30 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14 0,16 0 4 8 12 16 20 r g (w) e (mws) e rec high t e rec low t 0,000 0,002 0,004 0,006 0,008 0,010 0,012 0 5 10 15 20 25 30 i c (a) e (mws) e rec high t e rec low t 0,000 0,002 0,004 0,006 0,008 0,010 0,012 0,014 048121620 r g (w) e (mws) 8 revis ion: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 9 mosfet figure 10 mosfet typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 400 v v ce = 400 v v ge = 10 v v ge = 10 v r gon = 4 ? i c = 15 a r goff = 4 ? figure 11 fred figure 12 fred typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 15 a r gon = 4 ? v ge = 10 v buck t doff t f t don t r 0,00 0,01 0,10 1,00 0 5 10 15 20 25 30 i c (a) t (ms) t rr high t t rr low t 0,000 0,005 0,010 0,015 0,020 0,025 0481 21 62 0 r gon (w) t rr (ms) t doff t f t don t r 0,00 0,01 0,10 1,00 0 4 8 12 16 20 r g (w) t (ms) t rr high t t rr low t 0,000 0,002 0,004 0,006 0,008 0,010 0,012 0,014 0 5 10 15 20 25 30 i c (a) t rr (ms) 9 revis ion: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 13 fred figure 14 fred typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 15 a r gon = 4 ? v ge = 10 v figure 15 fred figure 16 fred typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 15 a r gon = 4 ? v ge = 10 v buck i rrm high t i rrm low t 0 5 10 15 20 25 0 4 8 12 16 20 r gon (w) i rrm (a) q rr high t q rr low t 0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0 4 8 12 16 20 r gon ( ) q rr (mc) i rrm high t i rrm low t 0 4 8 12 16 20 0 5 10 15 20 25 30 i c (a) i rrm (a) q rr high t q rr low t 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0 5 10 15 20 25 30 i c (a) q rr (mc) 10 rev ision: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 17 fred figure 18 fred typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 15 a r gon = 4 ? v ge = 10 v figure 19 mosfet figure 20 fred igbt transient thermal impedance f red transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,75 k/w r thjh = 3,28 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,03 9,3e+00 0,17 9,7e-01 0,12 1,2e+00 1,04 8,5e-02 0,41 1,6e-01 1,34 1,6e-02 0,11 3,8e-02 0,65 2,5e-03 0,03 5,2e-03 0,08 3,2e-04 0,04 3,7e-04 buck t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt high t di rec /dt high t di 0 /dt low t di rec /dt low t 0 1000 2000 3000 4000 5000 6000 7000 8000 0 4 8 12 16 20 r gon (w) di rec / dt (a/ms) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 1000 2000 3000 4000 5000 6000 7000 0 5 10 15 20 25 30 i c (a) di rec / dt (a/ms) di 0 /dt di rec /dt di 0 /dt di rec /dt 11 rev ision: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 21 mosfet figure 22 mosfet power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 150 c t j = 150 c v ge = 15 v figure 23 fred figure 24 fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 c t j = 175 c buck 0 40 80 120 160 200 240 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) p tot (w) 0 4 8 12 16 20 0 50 100 150 200 t h ( o c) i f (a) 12 rev ision: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 25 mosfet figure 26 mosfet safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce )v ge = f(q g ) at at d = single pulse i c = 44 a th = 80 oc v ge = 15 v t j =t jmax oc buck v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 10us 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 0 20 40 60 80 100 120 140 160 q g (nc) v ge (v) 120 v 480 v 13 rev ision: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 1 igbt figure 2 igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 igbt figure 4 igbt typical transfer characteristics igbt transient thermal impedance i c = f(v ge ) as a function of pulse width z thjh = f(t p ) at t p = 250 s at v ce = 10 v d = tp / t r thjh = 1,10 k/w boost 0 10 20 30 40 50 60 70 0,0 1,0 2,0 3,0 4,0 5,0 v ce (v) i c (a) 0 10 20 30 40 50 024681012 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 70 0,0 1,0 2,0 3,0 4,0 5,0 v ce (v) i c (a) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 14 rev ision: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 5 igbt figure 6 igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v boost 0 20 40 60 80 100 120 140 160 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i c (a) 15 rev ision: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 1 boost mosfet figure 2 boost fred typical output characteristics typical output characteristics i d = f(v ds ) i d = f(v ds ) at at t p = 250 s t p = 250 s t j = 25 c t j = 126 c v gs from 4 v to 14 v in steps of 1 v v gs from 4 v to 14 v in steps of 1 v figure 3 boost mosfet figure 4 boost fred typical transfer characteristics typical diode forward current as i d = f(v ds ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ds = 10 v input boost 0 10 20 30 40 50 0 0,8 1,6 2,4 3,2 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 0123456 v gs (v) i d (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 012345 v ce (v) i c (a) 0 20 40 60 80 100 012345 v ce (v) i c (a) 16 rev ision: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 5 boost mosfet figure 6 boost mosfet typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i d ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ds = 400 v v ds = 400 v v gs = 10 v v gs = 10 v r gon = 4 ? i d = 15 a r goff = 4 ? figure 7 boost mosfet figure 8 boost mosfet typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector (drain) current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ds = 400 v v ds = 400 v v gs = 10 v v gs = 10 v r gon = 4 ? i d = 15 a r goff = 4 ? input boost e rec high t e rec low t 0 0,005 0,01 0,015 0,02 0,025 0 5 10 15 20 25 30 i c (a) e (mws) e rec high t e rec low t 0 0,003 0,006 0,009 0,012 0,015 0,018 0 4 8 12 16 20 r g ( ) e (mws) e off high t e on high t e on low t e off low t 0 0,04 0,08 0,12 0,16 0,2 0 5 10 15 20 25 30 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 0,04 0,08 0,12 0,16 0,2 0 4 8 12 16 20 r g ( ) e (mws) 17 rev ision: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 9 boost mosfet figure 10 boost mosfet typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i d ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ds = 400 v v ds = 400 v v gs = 10 v v gs = 10 v r gon = 4 ? i c = 15 a r goff = 4 ? figure 11 boost fred figure 12 boost fred typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 15 a r gon = 4 ? v gs = 10 v input boost t doff t f t don t r 0,001 0,01 0,1 1 0 5 10 15 20 25 30 i d (a) t ( s) t doff t f t don t r 0,001 0,01 0,1 1 0 4 8 12 16 20 r g ( ) t ( s) t rr high t t rr low t 0 0,005 0,01 0,015 0,02 0,025 0,03 0 4 8 12 16 20 r gon ( ) t rr ( s) t rr high t t rr low t 0 0,004 0,008 0,012 0,016 0,02 0 5 10 15 20 25 30 i c (a) t rr ( s) 18 rev ision: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 13 boost fred figure 14 boost fred typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c tj = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f =15 a r gon = 4 ? v gs =10 v figure 15 boost fred figure 16 boost fred typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f = 15 a r gon = 4 ? v gs = 10 v input boost i rrm high t i rrm low t 0 5 10 15 20 25 30 048121620 r gon ( ) irr m (a) q rr high t q rr low t 0,02 0,04 0,06 0,08 0,1 048121620 r gon ( ) q rr ( c) i rrm high t i rrm low t 0 5 10 15 20 25 0 5 10 15 20 25 30 i c (a) irr m (a) q rr high t q rr low t 0 0,02 0,04 0,06 0,08 0,1 0 5 10 15 20 25 30 i c (a) q rr ( c) 19 rev ision: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 17 boost fred figure 18 boost fred typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c tj = 25/125 c v ce = 400 v v r = 400 v v ge = 10 v i f =15 a r gon = 4 ? v gs =10 v figure 19 boost mosfet figure 20 boost fred igbt/mosfet transient thermal impeda nce fred transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,76 k/w r thjh = 2,34 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,03247 9,971 0,1024 2,885 0,1223 1,22 0,495 0,3437 0,4264 0,1797 0,9886 0,07039 0,1173 0,04698 0,4865 0,01004 0,03103 0,005891 0,2673 0,001614 0,03298 0,0004038 input boost di 0 /dt low t di rec /dt low t di 0 /dt high t di rec /dt high t 0 2000 4000 6000 8000 10000 12000 0 4 8 12 16 20 r gon ( ) di rec / dt (a/ s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt high t di rec /dt high t di rec /dt low t di 0 /dt low t 0 1000 2000 3000 4000 5000 6000 0 5 10 15 20 25 30 i c (a) di rec / dt (a/ s) di 0 /dt di rec /dt di 0 /dt di rec /dt 20 rev ision: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 21 boost mosfet figure 22 boost mosfet power dissipation as a collector/drain current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 150 oc t j = 150 oc v gs = 10 v figure 23 boost fred figure 24 boost fred power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 oc t j = 175 oc input boost 0 40 80 120 160 200 0 50 100 150 200 th ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 th ( o c) i c (a) 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t h ( o c) i f (a) 21 rev ision: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 25 boost mosfet figure 26 boost mosfet safe operating area as a function gate voltage vs gate charge of drain-source voltage i d = f(v ds )v gs = f(qg) at at d = single pulse i d = 44 a t h = 80 oc v gs = 10 v t j =t jmax oc input boost v ds (v) i d (a) 10 3 10 0 10 -1 10 1 10 2 10 2 10us 100us 1ms 10ms 100ms dc 10 1 10 0 0 2 4 6 8 10 0 30 60 90 120 150 qg (nc) u gs (v) 120v 480v 22 revision: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 1 bypass diode figure 2 bypass diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 sd = t p / t r thjh = 1,677 k/w figure 3 bypass diode figure 4 bypass diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 oc t j = 150 oc bypass diode 0 10 20 30 40 50 0 0,3 0,6 0,9 1,2 1,5 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) i f (a) 23 rev ision: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 1 thermistor figure 2 thermistor typical ntc characteristic typical ntc resistance values as a function of temperature r t = f(t) thermistor [] ?= ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? 25 100 / 25 11 25 )( tt b ertr ntc-typical temperature characteristic 0 5000 10000 15000 20000 25000 25 50 75 100 125 t (c) r/ ? 24 rev ision: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet t j 125 c r g on 4 ? r goff 4 ? figure 1 output inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t dof f , t eof f turn-on switching waveforms & definition of t don , t eon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) v ge (0%) = 0v v ge (0%) = 0v v ge (100%) = 10 v v ge (100%) = 10 v v c (100%) = 400 v v c (100%) = 400 v i c (100%) = 15 a i c (100%) = 15 a t doff = 0,16 s t don = 0,03 s t eoff = 0,17 s t eon = 0,06 s figure 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 400 v v c (100%) = 400 v i c (100%) = 15 a i c (100%) = 15 a t f = 0,01 s t r = 0,01 s switching definitions buck mosfet general conditions = = = i c 1% v ce 90% v ge 90% -20 0 20 40 60 80 100 120 140 -0,1 -0,05 0 0,05 0,1 0,15 0,2 0,25 0,3 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -50 0 50 100 150 200 2,4 2,45 2,5 2,55 2,6 2,65 2,7 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 0,14 0,145 0,15 0,155 0,16 0,165 0,17 time (us) % v ce i c t f i c10% i c90% -20 20 60 100 140 180 220 2,45 2,5 2,55 2,6 2,65 time(us) % tr v ce ic 25 rev ision: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 6,01 kw p on (100%) = 6,01 kw e off (100%) = 0,02 mj e on (100%) = 0,07 mj t eoff = 0,17 s t eon = 0,06 s figure 7 output inverter fred figure 8 output inverter igbt gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t r r v geoff = 0v v d (100%) = 400 v v geon = 10 v i d (100%) = 15 a v c (100%) = 400 v i rrm (100%) = -6 a i c (100%) = 15 a t rr = 0,01 s q g = 112,54 nc switching definitions buck mosfet i c 1% v ge90% -50 -20 10 40 70 100 130 160 -0,1 -0,05 0 0,05 0,1 0,15 0,2 0,25 0,3 time (us) % p of f e off t eoff v ce3% v ge10% -20 20 60 100 140 180 2,475 2,5 2,525 2,55 2,575 2,6 time(us) % p on e on t eon -5 0 5 10 15 -20 0 20 40 60 80 100 120 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -120 -80 -40 0 40 80 120 2,52 2,53 2,54 2,55 2,56 2,57 time(us) % i d v d fitted 26 rev ision: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet figure 9 output inverter fred figure 10 output inverter fred turn-on switching waveforms & definition of t qr r turn-on switching waveforms & definition of t erec (t qrr = integrating time for q r r )( t erec = integrating time for e rec ) i d (100%) = 15 a p rec (100%) = 6,01 kw q rr (100%) = 0,03 c e rec (100%) = 0,01 mj t qrr = 0,02 s t erec = 0,02 s figure 11 buck stage switching measurement circuit measurement circuits switching definitions buck mosfet t qrr -100 -50 0 50 100 150 200 2,48 2,51 2,54 2,57 2,6 2,63 time(us) % i d q r r -50 0 50 100 150 200 2,5 2,51 2,52 2,53 2,54 2,55 2,56 2,57 2,58 2,59 2,6 time(us) % p rec e rec t erec 27 rev ision: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet ordering code in datamatrix as in packaging barcode as without thermal paste 12mm housing 10-FZ06BIA045FH-p897e p897e p897e outline pinout ordering code & marking ordering code and marking - outline - pinout 28 revi sion: 6 copyright by vincotech
FZ06BIA045FH preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for te chnically tr ained st aff. target product status datasheet status definition this datasheet contains the design specifications for product development. specific ations may change in any manner without notice. the dat a contained is exclusively intended for technica lly trai ned staff. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tes ted values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to i mprove reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product o r circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express wri tten approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. 29 revis ion: 6 copyright by vincotech


▲Up To Search▲   

 
Price & Availability of FZ06BIA045FH

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X