Part Number Hot Search : 
74HCT04A 2SA111 2412S 12A24 M7GALP03 AHCT3 025D12N2 A000010
Product Description
Full Text Search
 

To Download APT50GP60JDF2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  050-7437 rev c 4-2003 APT50GP60JDF2 600v the power mos 7 ? igbt is a new generation of high voltage power igbts. using punch through technology this igbt is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. ? low conduction loss ? 200 khz operation @ 400v, 19a ? low gate charge ? 100 khz operation @ 400v, 26a ? ultrafast tail current shutoff ? ssoa rated maximum ratings all ratings: t c = 25c unless otherwise specified. caution: these devices are sensitive to electrostatic discharge. proper handling procedures should be followed. apt website - http://www.advancedpower.com static electrical characteristics min typ max 600 3 4.5 6 2.2 2.7 2.1 500 2500 100 characteristic / test conditions collector-emitter breakdown voltage (v ge = 0v, i c = 500a) gate threshold voltage (v ce = v ge , i c = 1ma, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 50a, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 50a, t j = 125c) collector cut-off current (v ce = 600v, v ge = 0v, t j = 25c) 2 collector cut-off current (v ce = 600v, v ge = 0v, t j = 125c) 2 gate-emitter leakage current (v ge = 20v) symbol bv ces v ge(th) v ce(on) i ces i ges unit volts a na symbol v ces v ge v gem i c1 i c2 i cm ssoa p d t j ,t stg t l APT50GP60JDF2 600 20 30 100 46 190 190a@600v 329 -55 to 150 300 unit volts amps watts c parameter collector-emitter voltage gate-emitter voltage gate-emitter voltage transient continuous collector current @ t c = 25c continuous collector current @ t c = 110c pulsed collector current 1 @ t c = 150c safe operating area @ t j = 150c total power dissipation operating and storage junction temperature range max. lead temp. for soldering: 0.063" from case for 10 sec. power mos 7 ? igbt g c e sot-227 g e e c isotop "ul recognized"
050-7437 rev c 4-2003 APT50GP60JDF2 dynamic characteristics symbol c ies c oes c res v gep q g q ge q gc ssoa t d(on) t r t d(off) t f e on1 e on2 e off t d(on) t r t d(off) t f e on1 e on2 e off test conditions capacitance v ge = 0v, v ce = 25v f = 1 mhz gate charge v ge = 15v v ce = 300v i c = 50a t j = 150c, r g = 5 ?, v ge = 15v, l = 100h,v ce = 600v inductive switching (25c) v cc = 400v v ge = 15v i c = 50a r g = 5 ? t j = +25c inductive switching (125c) v cc = 400v v ge = 15v i c = 50a r g = 5 ? t j = +125c characteristic input capacitance output capacitance reverse transfer capacitance gate-to-emitter plateau voltage total gate charge 3 gate-emitter charge gate-collector ("miller ") charge safe operating area turn-on delay time current rise time turn-off delay time current fall time turn-on switching energy 4 turn-on switching energy (diode) 5 turn-off switching energy 6 turn-on delay time current rise time turn-off delay time current fall time turn-on switching energy 4 turn-on switching energy (diode) 5 turn-off switching energy 6 min typ max 5700 465 30 7.5 165 40 50 190 19 36 83 60 465 837 637 19 36 116 86 465 1261 1058 unit pf v nc a ns j ns j unit c/w gm min typ max .38 1.21 29.2 characteristic junction to case (igbt) junction to case (diode) package weight symbol r jc r jc w t thermal and mechanical characteristics 1 repetitive rating: pulse width limited by maximum junction temperature. 2 for combi devices, i ces includes both igbt and fred leakages 3 see mil-std-750 method 3471. 4e on1 is the clamped inductive turn-on-energy of the igbt only, without the effect of a commutating diode reverse recovery current adding to the igbt turn-on loss. (see figure 24.) 5e on2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the igbt turn-on switchi ng loss. a combi device is used for the clamping diode as shown in the e on2 test circuit. (see figures 21, 22.) 6e off is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1. (see figures 21, 23.) apt reserves the right to change, without notice, the specifications and information contained herein.
050-7437 rev c 4-2003 typical performance curves APT50GP60JDF2 v ce , collecter-to-emitter voltage (v) v ce , collecter-to-emitter voltage (v) figure 1, output characteristics(v ge = 15v) figure 2, output characteristics (v ge = 10v) v ge , gate-to-emitter voltage (v) gate charge (nc) figure 3, transfer characteristics figure 4, gate charge v ge , gate-to-emitter voltage (v) t j , junction temperature (c) figure 5, on state voltage vs gate-to- emitter voltage figure 6, on state voltage vs junction temperature t j , junction temperature (c) t c , case temperature (c) figure 7, breakdown voltage vs. junction temperature figure 8, dc collector current vs case temperature bv ces , collector-to-emitter breakdown v ce , collector-to-emitter voltage (v) i c , collector current (a) i c , collector current (a) voltage (normalized) i c, dc collector current(a) v ce , collector-to-emitter voltage (v) v ge , gate-to-emitter voltage (v) i c , collector current (a) 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 0 1 2 3 4 5 6 7 8 9 10 0 20 40 60 80 100 120 140 160 180 6 8 10 12 14 16 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 150 t j = 25c. 250s pulse test <0.5 % duty cycle t c =-55c t c =125c t c =25c v ce =480v v ce =300v v ce =120v v ge = 10v. 250s pulse test <0.5 % duty cycle v ge = 15v. 250s pulse test <0.5 % duty cycle v ge = 15v. 250s pulse test <0.5 % duty cycle i c = 50a t j = 25c t j = 25c t j = -55c t j = 125c t c =-55c t c =25c t c =125c 250s pulse test <0.5 % duty cycle i c = 25a i c = 50a i c =100a i c =100a i c = 25a 70 60 50 40 30 20 10 0 100 80 60 40 20 0 3.5 3 2.5 2 1.5 1 0.5 0 1.2 1.15 1.10 1.05 1.0 0.95 0.9 0.85 0.8 70 60 50 40 30 20 10 0 16 14 12 10 8 6 4 2 0 3 2.5 2 1.5 1 0.5 0 140 120 100 80 60 40 20 0 i c = 50a
050-7437 rev c 4-2003 APT50GP60JDF2 t j = 125c, v ge = 10v or 15v t j = 25c, v ge = 10v or 15v v ce = 400v r g = 5 ? l = 100 h v ge = 15v,t j =125c v ge = 15v v ge = 10v v ge =10v,t j =125c v ge = 10v,t j =25c v ge = 15v,t j =25c t j = 25c, v ge = 10v or 15v i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 9, turn-on delay time vs collector current figure 10, turn-off delay time vs collector current i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 11, current rise time vs collector current figure 12, current fall time vs collector current i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 13, turn-on energy loss vs collector current figure 14, turn off energy loss vs collector current r g , gate resistance (ohms) t j , junction temperature (c) figure 15, switching energy losses vs. gate resistance figure 16, switching energy losses vs junction temperature r g = 5 ? , l = 100 h, v ce = 400v r g = 5 ? , l = 100 h, v ce = 400v v ce = 400v l = 100 h r g = 5 ? t j = 25 or 125c,v ge = 15v t j = 25 or 125c,v ge = 10v v ce = 400v v ge = +15v r g = 5 ? switching energy losses (j) e on2 , turn on energy loss (j) t r, rise time (ns) t d(on) , turn-on delay time (ns) switching energy losses (j) e off , turn off energy loss (j) t f, fall time (ns) t d (off) , turn-off delay time (ns) v ce = 400v v ge = +15v t j = 125c v ce = 400v l = 100 h r g = 5 ? t j =125c, v ge =15v t j = 125c, v ge = 10v or 15v t j =125c,v ge =10v t j = 25c, v ge =10v t j = 25c, v ge =15v 20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 -50 -25 0 25 50 75 100 125 40 35 30 25 20 15 10 05 0 100 90 80 70 60 50 40 30 20 10 0 4000 3500 3000 2500 2000 1500 1000 500 0 6000 5000 4000 3000 2000 1000 0 140 120 100 80 60 40 20 0 120 100 80 60 40 20 0 3500 3000 2500 2000 1500 1000 500 0 4000 3500 3000 2500 2000 1500 1000 500 0 e off 100a e on2 100a e on2 25a e off 50a e on2 50a e off 25a e on2 25a e off 50a e on2 50a e on2 100a e off 100a e off 25a v ce = 400v t j = 25c or 125c r g = 5 ? l = 100 h typical performance curves
050-7437 rev c 4-2003 10,000 5,000 1,000 500 100 50 10 200 180 160 140 120 100 180 160 140 120 0 c, capacitance ( p f) i c , collector current (a) v ce , collector-to-emitter voltage (volts) v ce , collector to emitter voltage figure 17, capacitance vs collector-to-emitter voltage figure 18, minimim switching safe operating area 0 10 20 30 40 50 0 100 200 300 400 500 600 700 c ies c oes c res typical performance curves APT50GP60JDF2 rectangular pulse duration (seconds) figure 19a, maximum effective transient thermal impedance, junction-to-case vs pulse duration i c , collector current (a) figure 20, operating frequency vs collector current max max1 max 2 max1 d (on ) r d(off ) f diss cond max 2 on 2 off jc diss jc fmin(f,f) 0.05 f ttt t pp f ee tt p r = = ++ + ? = + ? = figure 19b, transient thermal impedance model 10 20 30 40 50 60 70 80 210 100 50 10 f max , operating frequency (khz) t j = 125 c t c = 75 c d = 50 % v ce = 400v r g = 5 ? 0.0775 0.216 0.0855 0.0158f 0.313f 4.49f power (watts) junction temp. ( ?c) rc model case temperature 0.20 0.16 0.12 0.08 0.04 0 note: duty factor d = t 1 / t 2 peak t j = p dm x z jc + t c t 1 t 2 p dm z jc , thermal impedance (c/w) 0.3 0.9 0.7 0.1 0.05 0.5 single pulse 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 10
050-7437 rev c 4-2003 APT50GP60JDF2 figure 22, turn-on switching waveforms and definitions figure 23, turn-off switching waveforms and definitions 90% gate voltage collector voltage collector current 0 t f 90% 10% t d(off) switching energy t t j = 125 c collector current collector voltage switching energy 5 % 10% gate voltage 10% t d(on) 5% t r 90% t j = 125 c *driver same type as d.u.t. i c v clamp 100uh v test a a b d.u.t. driver* v ce figure 24, e on1 test circuit typical performance curves i c a d.u.t. apt30df60 v ce figure 21, inductive switching test circuit v cc
050-7437 rev c 4-2003 APT50GP60JDF2 characteristic / test conditions maximum average forward current (t c = 99c, duty cycle = 0.5) rms forward current (square wave, 50% duty) non-repetitive forward surge current (t j = 45c, 8.3ms) symbol i f (av) i f (rms) i fsm symbol v f characteristic / test conditions i f = 50a forward voltage i f = 100a i f = 50a, t j = 125c static electrical characteristics unit amps unit volts min typ max 2.6 3.6 1.9 APT50GP60JDF2 30 49 320 dynamic characteristics maximum ratings all ratings: t c = 25c unless otherwise specified. apt reserves the right to change, without notice, the specifications and information contained herein. ultrafast soft recovery anti-parallel diode min typ max - 21 -62 -65 -3- - 113 - 411 -7- -49 - 704 -22 unit ns nc amps ns nc amps ns nc amps characteristic reverse recovery time reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current symbol t rr t rr q rr i rrm t rr q rr i rrm t rr q rr i rrm test conditions i f = 30a, di f /dt = -200a/ s v r = 400v, t c = 25 c i f = 30a, di f /dt = -200a/ s v r = 400v, t c = 125 c i f = 30a, di f /dt = -1000a/ s v r = 400v, t c = 125 c i f = 1a, di f /dt = -100a/ s, v r = 30v, t j = 25 c z jc , thermal impedance (c/w) 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 rectangular pulse duration (seconds) figure 25a. maximum effective transient thermal impedance, junction-to-case vs. pulse duration 1.40 1.20 1.00 0.80 0.60 0.40 0.20 0 note: duty factor d = t 1 / t 2 peak t j = p dm x z jc + t c t 1 t 2 p dm 0.5 single pulse 0.1 0.3 0.7 0.9 0.05 figure 25b, transient thermal impedance model 0.320 c/w 0.515 c/w 0.375 c/w 0.00278 j/ c 0.0421 j/ c 0.242 j/ c power (watts) junction temp ( c) rc model case temperature ( c)
050-7437 rev c 4-2003 APT50GP60JDF2 t j = 125 c v r = 400v 15a 30a 60a q rr , reverse recovery charge i f , forward current (nc) (a) i rrm , reverse recovery current t rr , reverse recovery time (a) (ns) t j = -55 c t j = 25 c t j = 125 c t j = 150 c 120 100 80 60 40 20 0 25 20 15 10 5 0 duty cycle = 0.5 t j = 150 c 60 50 40 30 20 10 0 c j , junction capacitance k f , dynamic parameters (pf) (normalized to 1000a/ s) i f(av) (a) 30a 60a 15a 100 90 80 70 60 50 40 30 20 10 0 900 800 700 600 500 400 300 200 100 0 0 1 2 3 4 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 30a 15a 60a t j = 125 c v r = 400v t rr q rr q rr t rr i rrm 0 25 50 75 100 125 150 25 50 75 100 125 150 .3 1 10 100 200 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 450 400 350 300 250 200 150 100 50 0 t j = 125 c v r = 400v v f , anode-to-cathode voltage (v) -di f /dt, current rate of change(a/ s) figure 26. forward current vs. forward voltage figure 27. reverse recovery time vs. current rate of change -di f /dt, current rate of change (a/ s) -di f /dt, current rate of change (a/ s) figure 28. reverse recovery charge vs. current rate of change figure 29. reverse recovery current vs. current rate of change t j , junction temperature ( c) case temperature ( c) figure 30. dynamic parameters vs. junction temperature figure 31. maximum average forward current vs. casetemperature v r , reverse voltage (v) figure 32. junction capacitance vs. reverse voltage
050-7437 rev c 4-2003 sot-227 (isotop ? ) package outline 31.5 (1.240) 31.7 (1.248) dimensions in millimeters and (inches) 7.8 (.307) 8.2 (.322) 30.1 (1.185) 30.3 (1.193) 38.0 (1.496) 38.2 (1.504) 14.9 (.587) 15.1 (.594) 11.8 (.463) 12.2 (.480) 8.9 (.350) 9.6 (.378) hex nut m4 (4 places) 0.75 (.030) 0.85 (.033) 12.6 (.496) 12.8 (.504) 25.2 (0.992) 25.4 (1.000) 1.95 (.077) 2.14 (.084) * emitter/anode collector/cathode gate * r = 4.0 (.157) (2 places) 4.0 (.157) 4.2 (.165) (2 places) w=4.1 (.161) w=4.3 (.169) h=4.8 (.187) h=4.9 (.193) (4 places) 3.3 (.129) 3.6 (.143) * emitter/anode emitter/anode terminals are shorted internally. current handling capability is equal for either emitter/anode terminal. 4 3 1 2 5 5 zero 1 2 3 4 di f /dt - rate of diode current change through zero crossing. i f - forward conduction current i rrm - maximum reverse recovery current. t rr - reverse r ecovery time, measured from zero crossing where diode q rr - area under the curve defined by i rrm and t rr . current goes from positive to negative, to the point at which the straight line through i rrm and 0.25 i rrm passes through zero. figure 33. diode test circuit figure 34, diode reverse recovery waveform and definitions 0.25 i rrm pearson 2878 current transformer di f /dt adjust 30 h d.u.t. +18v 0v v r t rr / q rr waveform apt6017lll apt?s products are covered by one or more of u.s.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. us and foreign pat ents pending. all rights reserved. isotop ? is a registered trademark of sgs thomson.


▲Up To Search▲   

 
Price & Availability of APT50GP60JDF2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X