Part Number Hot Search : 
CY7C6372 IR340 SUREV 30000 LV2285VB MC33039 D124EI D1117
Product Description
Full Text Search
 

To Download M02169Q32-XX Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 M02169 -5.2 or +5.0 Volt EAM and DML Driver IC for Applications to 10.7 Gbps
This device is a highly integrated, programmable electro-absorptive modulator (EAM) and directly modulated laser (DML) driver intended for SONET/SDH applications to 10.7 Gbps. Using differential CML data and clock inputs, this part supplies offset, bias and modulation for driving an EAM or DML. The modulation output is designed to be DC-coupled to the modulator or laser. In EAM applications, user controlled offset adjustment is integrated into the signal output. Automatic power control allows for optimization of either DML or EAM applications.
Applications
* * * * * * SONET OC-192 Optical Transmitters SDH STM-64 Optical Transmitters OC-192/STM-64 Optical Transmitters with FEC 10 Gigabit Ethernet Transmitters 10 Gigabit Fibre Channel Transmitters Optical Transmitter applications to 10.7 Gbps
Features
* High speed operation; suitable for applications to 10.7 Gbps. Rise/fall times < 30 ps * DC-coupled modulation output * Differential CML data and clock inputs to minimize pattern dependent jitter (retiming is optional). Can be AC- or DC-coupled CML or ACcoupled PECL * Independently programmable modulator offset and modulation voltages for EAM applications. Offset voltage to 1 V and modulation to 3 Vpp into 50 at VEE = -5.2 V * In EAM applications, offset integrated into signal output without using external components, facilitating a clean high-speed signal path * Automatic power control for DML applications - laser bias current to 100 mA, usable for EAM applications with an external current mirror * Pulse width adjust to 20 ps * Bias and modulation current monitors * Available in 32 pin 5 x 5 mm QFN package
Functional Block Diagram
PWAb PWA CEN HF
Input Buffers D IN+ D IND-FF Output Buffer Laser Driver OUTN OUTP V EEO Output Offset Modulation Control MOD TC
SET
- 0.7 V TT
CLK+ CLKInput Buffers OFFSCNTL Tx Disable
START
TCSLOPE Automatic Power Control IPIN IBIASOUT CMPC MOD MON BIASMON OCASET
02169-DSH-001-C
Mindspeed TechnologiesTM
OCA
FAIL
DIS
January 2004
M02169 Data Sheet
Ordering Information
Part Number
M02169Q32-XX
Number of Channels
...
Package
32 pin QFN
Operating Temperature
-40 C to 85 C
NOTE: xx represents the revision number. Please contact your local sales office for correct digit(s).
Revision History
Revision
A B C
Level
Advance Preliminary Released
Date
February 2002 February 2003 January 2004
ASIC Revision
-11 -12 -13 Initial Release
Description
ii
Mindspeed TechnologiesTM
02169-DSH-001-C
Table of Contents
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 1.2 1.3 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 1.3.1 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 1.3.2 Bias Generator and Automatic Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 1.3.3 APC Loop Fail and Overcurrent Alarm (OCA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.3.4 Modulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 1.3.5 Data and Clock Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 1.3.6 VTT Input Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 1.3.7 Pulse Width Adjust. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 1.3.8 Clock Enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 1.3.9 TX Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 1.3.10 HF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 1.3.11 Output Offset Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Laser Eye Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Design Brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 1.5.1 Step 1: Choosing RMOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 1.5.2 Step 2: Calculate Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 1.5.3 Step 3: Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 1.5.4 Step 4: Determine the value of RTCSTART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 1.5.5 Step 5: Select RTCSLOPE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 1.5.6 Step 6: Select ROCASET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 1.5.7 Step 7: Integrated Output Offset Control (EAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 1.5.8 Step 8: Automatic Power Control (EAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
1.4 1.5
1.6 1.7
2.0
Product Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 2.2 2.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
02169-DSH-001-C
Mindspeed TechnologiesTM
iii
M02169 Data Sheet
2.4 2.5 2.6
AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Package Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Pinout Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
iv
Mindspeed TechnologiesTM
02169-DSH-001-C
List of Figures
Figure 1-1. Figure 1-2. Figure 1-3. Figure 1-4. Figure 1-5. Figure 1-6. Figure 1-7. Figure 1-8. Figure 1-9. Figure 1-10. Figure 1-11. Figure 1-12. Figure 1-13. Figure 1-14. Figure 1-15. Figure 1-16. Figure 1-17. Figure 1-18. Figure 1-19. Figure 2-1. Figure 2-2. Figure 2-3.
M02169 Block Diagram Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Automatic Power Control Loop and Bias Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 OCA Set Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Fail and OCA Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Modulator Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Modulator Control and Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Data and Clock Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Pulse Width Adjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Clock Enable, Tx Disable and HF Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Offset Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Modulation Voltage (into 50 ohm) vs. R_Modset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Non-retimed Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 TCSTART vs. RTCSTART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 RTCSTART = 3.0 k ohm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 RTCSTART = 2.0 k ohm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Room Temperature IBIAS OCA Assert Level vs. R_OCAset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Modulation Offset Voltage vs. R_Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Application Block Diagram (1) Direct Modulated Laser (DML) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Application Block Diagram (2) Electro-Absorbtive (EA) Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Data and Clock Input Requirements, Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 QFN32 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 QFN32 Pinout Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
02169-DSH-001-C
Mindspeed TechnologiesTM
v
M02169 Data Sheet
vi
Mindspeed TechnologiesTM
02169-DSH-001-C
List of Tables
Table 1-1. Table 2-1. Table 2-2. Table 2-3. Table 2-4.
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
02169-DSH-001-C
Mindspeed TechnologiesTM
vii
M02169 Data Sheet
viii
Mindspeed TechnologiesTM
02169-DSH-001-C
1.0 Functional Description
1.1
Overview
This device is a highly integrated, programmable electro-absorptive modulator (EAM) and directly modulated laser (DML) driver intended for SONET/SDH applications to 10.7 Gbps. Using differential CML data and clock inputs, this part supplies offset, bias and modulation for driving an EAM or DML. The modulation output is designed to be DC-coupled to the modulator or laser. In EAM applications, user controlled offset adjustment is integrated into the signal output. Automatic power control allows for optimization of either DML or EAM applications. Figure 1-1. M02169 Block Diagram Example
PWAb PWA
CEN
Input Buffers D IN+ D IND-FF Output Buffer Laser Driver OUTN OUTP V EEO Output Offset Modulation Control MOD TC TC Input Buffers OFFS CNTL Tx Disable Automatic Power Control I I
SET
- 0.7 V TT
HF
CLK+ CLK-
START SLOPE
PIN BIASOUT
CMPC MOD MON BIASMON OCA SET
02169-DSH-001-C
Mindspeed TechnologiesTM
OCA
FAIL
DIS
1
M02169 Data Sheet
1.2
* * * * * * * * *
Features
High speed operation; suitable for applications to 10.7 Gbps. Rise/fall times < 30 ps DC-coupled modulation output Differential CML data and clock inputs to minimize pattern dependent jitter (retiming is optional). Can be AC- or DC-coupled CML or AC-coupled PECL Independently programmable modulator offset and modulation voltages for EAM applications. Offset voltage to 1 V and modulation to 3 Vpp into 50 at VEE = -5.2 V In EAM applications, offset integrated into signal output without using external components, facilitating a clean high-speed signal path Automatic power control for DML applications - laser bias current to 100 mA, usable for EAM applications with an external current mirror Pulse width adjust to 20 ps Bias and modulation current monitors Available in 32 pin 5 x 5 mm QFN package
1.3
General Description
The M02169 driver is a highly integrated, programmable electro-absorbtive modulator (EAM), or direct-modulated laser (DML) driver which can deliver a 1 to 3 Vpp voltage swing with a 0 to 1 V offset into a 50 load. On chip 50 source termination is provided to improve signal fidelity at high speeds, easing interfacing design. Designed to operate from a -5.2 V power supply or alternatively a +5V supply, the device is specifically intended to be used with a 50 laser or EAM. The driver output is DC-coupled to the modulator or laser. An offset adjustment is provided in addition to the automatic power control (APC) to optimize the configuration for either DML or EAM applications. Offset is integrated into the signal output to help minimize external components and provide a clean high-speed interface. Modulation and bias monitor current mirrors are provided to allow monitoring without disturbing the analog signal path. Pulse width adjust allows the user to compensate for non-symmetric laser or modulator characteristics.
1.3.1
Detailed Description
The M02169 laser driver consists of the following circuitry: A high speed modulator, input buffer, modulation current control with monitor, bias monitor with automatic power control (APC), internal offset supply (no external inductor needed), laser fail indication, disable and over-current alarm for bias current.
1.3.2
Bias Generator and Automatic Power Control
The bias generator is capable of sinking up to 100 mA of current into the driver with a compliance voltage from 0 V to -4.0 V. The slow-start feature assures the bias current does not spike as the bias generator is enabled. When driving a laser directly, automatic power control (APC) of the laser is realized by using an external monitor photodiode connected to IPIN and a resistor (RMPCSET) from IPIN to VEE. This creates a voltage at IPIN which is one input to an internal comparator and whose other input is a bandgap reference voltage. The output of this comparator, after being low pass filtered by a capacitor connected to CMPC, controls the level of the bias generator current (the laser bias current). This feature can also be used with an external current mirror to provide APC for the integrated DFB laser portion of an EAM. The value of RMPCSET, the resistor from IPIN to VEE, is calculated as: RMPCSET = 1.28 V / (IPIN)
2
Mindspeed TechnologiesTM
02169-DSH-001-C
Functional Description
where IPIN is the PIN diode current. The APC loop time constant is controlled by connecting a capacitor from CMPC to VEE. The minimum value of CMPC is 1 nF, and the formula for APC loop bandwidth is: CMPC (nF) = 49.12 / BW (kHz) The bias generator also includes a bias current monitor mirror (BIASMON), whose output current is approximately 1/60th of the bias current. Current is sunk into this pad (towards VEE). Figure 1-2. Automatic Power Control Loop and Bias Monitoring
BIASMON C MPC IBIAS OUT I
PIN
V
EE
1.3.3
APC Loop Fail and Overcurrent Alarm (OCA)
The M02169 has two alarm outputs: FAIL and OCA. When the APC loop is unable to maintain the proper voltage at IPIN, the comparator at IPIN will assert the FAIL output indicating that the APC loop is unable to maintain constant power. The part continues to supply modulation and bias current even when FAIL is asserted. The OCA alarm is asserted when the current at IBIASOUT exceeds the level established by the resistor connected to OCASET. The OCA alarm output is the result of a comparator that has two inputs: one is the current through a resistor from the OCASET input to VEE (ROCASET) and the other is a current proportional to the bias generator current. When OCA is asserted, the part continues to supply modulation and bias current. An OCA alarm could be used to indicate laser end of life. Once the OCASET level is exceeded, the OCA flag is asserted, but not latched. Internal feedback to IPIN will attempt to limit the bias output current to roughly 10% above the OCASET level. The OCA flag is de-asserted once
02169-DSH-001-C
Mindspeed TechnologiesTM
3
M02169 Data Sheet
the bias current decreases below the OCASET level. The temperature coefficient of the OCASET level is approximately 2000 ppm/C. Figure 1-3. OCA Set Input
-2 V
-2 V
V REF
4.3 k 10.7 k
4.2 k
OCASet
V EE V EE
Figure 1-4.
Fail and OCA Outputs
-2V
(internal circuitry) 180
FAIL or OCA output
V EE
4
Mindspeed TechnologiesTM
02169-DSH-001-C
Functional Description
1.3.4
* * *
Modulator
The modulator consists of the following: An output current switch capable of delivering a 1 to 3 Vpp signal into a 50 load An offset supply, programmable from 0 to -1V Modulation monitoring
The output stage is has two outputs: OUTN and OUTP. There are two OUTN pins, each configured with a 50 series resistor (resulting in 25 equivalent resistance when the pins are connected together). The two OUTN pins should together be directly connected to the highest potential (usually ground). The collector of OUTP has an equivalent internal 60 series resistance which allows a good impedance-match with a 50 transmission line terminated by a 50 load to ground. The output stage also has a separate current path to VEE labelled VEEO. This allows the isolation of output switching currents from the rest of the system. VEEO should be connected to ground through a ferrite to further improve isolation (Murata BLM18HG471SN1 or equivalent recommended). The modulator current control includes TCSTART and TCSLOPE controls which, using resistor programming, sets the compensation of modulation current with temperature (TCSLOPE) and the temperature at which the compensation slope starts to occur (TCSTART). The details of these functions are described further in the Design Details section of this datasheet. The modulation current monitor (MODMON) is a current mirror, whose output current is approximately 1/30th of the modulation current. Current is sunk into this pin (towards VEE). Modulation output voltage is set by a resistor control (RMODSET) connected between the MODSET pin and VEE. Current is sourced from the MODSET pin to VEE. RMODSET is selected as: VMOD = 1.28 / (RMODSET + 3.26 k) * 27.3 * 450 or RMODSET = [(27.3 * 450 * 1.28) / (VMOD)] - 3.26 k IMOD can be calculated by taking VOUT p-p and dividing it by the 27.3 output load.
02169-DSH-001-C
Mindspeed TechnologiesTM
5
M02169 Data Sheet
Figure 1-5.
Modulator Output
OUTN 0.75 nH * 0.75 nH * 0.75 nH * 120 250
(TOTAL)
Cp OUTP Cp OUTN
50 250
50
120
8pf 0.14pf
0.14pf 0.14pf 250 V
E E
1pf 25 0.8 nH V
* Denotes internal package bond wire Cp denotes parasitic package capacitance of ~0.2 pF
*
VE E
EEO
(external ferrite recommended) V
E E
6
Mindspeed TechnologiesTM
02169-DSH-001-C
Functional Description
Figure 1-6.
Modulator Control and Monitoring
TC Modulation Control
START
V
EE
+ 1.28 V
TCSLOPE
MOD SET
3.26 k MOD
MON
V
EE
02169-DSH-001-C
Mindspeed TechnologiesTM
7
M02169 Data Sheet
1.3.5
Data and Clock Inputs
An input buffer with a D flip-flop allows the clock signal to re-time the data when the CEN input is tied high (GND). Data is re-timed on the rising edge of the clock signal. Both the clock and data inputs are CML levels, but can be AC-coupled PECL. The VTT Pin allows the input termination network to be level-shifted for DC-coupling to a variety of signal levels and types. With VTT tied high to ground, the clock and data inputs accept CML signals, while leaving VTT floating allows the inputs to accept AC-coupled PECL signals. The relationship between clock, data and V(OUTP) is shown in Figure 2-1. Figure 1-7. Data and Clock Inputs
V TT
2 pF
1.36 k
D +, D -, IN IN or CLK+, CLK-
50 8.6 k
V EE
1.3.6
VTT Input Termination
As mentioned in the data and clock description, the VTT pin allows the input termination network to be level-shifted for DC-coupling to a variety of signal levels and types. With VTT tied high to GND, the clock and data inputs accept CML signals, while leaving VTT floating allows the inputs to accept AC-coupled PECL signals.
8
Mindspeed TechnologiesTM
02169-DSH-001-C
Functional Description
1.3.7
Pulse Width Adjust
Pulse Width adjustment is accomplished by connecting a 2 k potentiometer to the PWA and PWAb pins with the center tap of the potentiometer going to VEE. Connecting PWA and PWAb to the most negative potential disables this function. The pulse width adjust functions over a range of 20 ps (when the duration of the positive going pulse is increased by up to 20 ps, the duration of the negative going pulse is correspondingly reduced by up to 20 ps). Figure 1-8. Pulse Width Adjust
-2 V
2k
2k
PWA 2k 2k
PWAb
V EE
1.3.8
Clock Enable
This TTL/CMOS compatible input is referenced to VEE. When the CEN input is tied high (GND), data re-timing is enabled which allows the clock signal to re-time the data. When CEN is tied low or left floating, the clock buffer is disabled, also resulting in a power savings. When the clock buffer is disabled the clock inputs may be left floating.
1.3.9
TX Disable
A TTL/CMOS compatible low referenced to VEE on DIS (or leave floating) enables the modulation and bias current outputs while a high disables them. When high, will disable the bias and modulation outputs.
1.3.10
HF
A TTL/CMOS compatible low referenced to VEE on HF (or leave floating) enables output damping which reduces overshoot and slightly increases rise and fall times. This compensation is typically selected through evaluation depending on laser/EAM characteristics.
02169-DSH-001-C
Mindspeed TechnologiesTM
9
M02169 Data Sheet
Figure 1-9.
Clock Enable, Tx Disable and HF Input
-2 V
CEN, DIS or HF 29 k Input Resistors are halved in value for HF V 47 k
EE
1.3.11
Output Offset Control
Shown in Figure 1-10, the output offset control is used to provide the needed reverse DC bias for an EAM. The OFFSCNTL adjustment provides enough output current into 50 to deliver a 0 to -1V offset. Connecting a 2k ohm potentiometer from OFFSCNTL to VEE adjusts the output offset voltage. Alternatively, the OFFSCNTL input can be connected to a DAC which is capable of sinking up to 2 mA of current to the most negative supply. Figure 1-10. Offset Control
V
EE
+ 1.28V Offset: (connected to OUTP internally)
OFFS CNTL 250
V EEO
10
Mindspeed TechnologiesTM
02169-DSH-001-C
Functional Description
1.4
Laser Eye Safety
Using this laser driver in the manner described herein does not ensure that the resulting laser transmitter complies with established standards such as IEC 825. Users must take the necessary precautions to ensure that eye safety and other applicable standards are met. Note that determining and implementing the level of fault tolerance required by the applications that this part is going into is the responsibility of the transmitter designer and manufacturer since the application of this device cannot be controlled by MindSpeed.
1.5
1.5.1
Design Brief
Step 1: Choosing RMOD
Chose the value of RMOD from Figure 1-11 depending on the value of peak-to-peak output voltage required. The approximate relationship is: RMODSET = [(27.3 * 450 * 1.28) / (VMOD)] - 3.26 k This value should be the nominal cold temperature value. Steps 3 and 4 show how to increase the modulation current with temperature to compensate for laser diode characteristics. Figure 1-11. Modulation Voltage (into 50 ohm) vs. R_Modset
Modulation Voltage (into 50) vs. R_Modset 4 3.5 VOUT into 50 Load (Vpp) 3 2.5 2 1.5 1 0.5 0 0 5 10 15 20 R_Modset (k) 25 30
02169-DSH-001-C
Mindspeed TechnologiesTM
11
M02169 Data Sheet
1.5.2
Step 2: Calculate Power Dissipation
Using Figure 1-12 below, determine the power dissipation for your application. Figure 1-12. Non-retimed Power Dissipation
Non-retimed Power Dissipation (add 75 mW for Retiming) 100 mA Bias 1.7 P DISS (W) 1.5 1.3 1.1 0.9 0.7 1 1.25 1.5 1.75 V 2
MOD
1.9
50 mA Bias 20 mA Bias, -1V Offset 20 mA Bias, -0.5V Offset 2.25 (p-p) 2.5 2.75 3
1.5.3
Step 3: Thermal Resistance
The thermal resistance of the package is 32C/watt. Use this number to calculate the die temperature rise.
12
Mindspeed TechnologiesTM
02169-DSH-001-C
Functional Description
1.5.4
Step 4: Determine the value of RTCSTART
The first step to calculating RTCSTART is to determine the temperature rise of the die. Refer to Figure 1-13. This is the value at which the temperature compensation begins to increase the output modulation voltage. Along with RTCSLOPE, it sets the value of modulation current increase at a given temperature. Figure 1-13. TCSTART vs. RTCSTART
TCSTART vs. RTCSTART 70 60 50 40 30 20 10 0 -10
TCS TART Temperature (deg C)
1
1.2
1.4
1.6
1.8 RTC
2
2.2
2.4
2.6
2.8
3
START
value (k)
1.5.5
Step 5: Select RTCSLOPE
The M02169 allows the user to compensate for the decrease in laser output power as temperature increases. Select the resistor value from the graphs below. Note that actual slope number is approximately linearly proportional to the RTCSLOPE value. For example, using Figure 1-15 which has a TCSTART value of 25C, if it is desired to have the 85C value for modulation current equal 1.5x the cold temperature value established with RMOD as in step 1 of this procedure (nominal modulation current), then RTCSLOPE = (25 k + 50 k)/2 = ~37.5 k should be used. Also notice that Figure 1-14 uses a start value of approximately -10C and Figure 1-15 uses a start value of ~25C. The actual start value is established in Step 4.
02169-DSH-001-C
Mindspeed TechnologiesTM
13
M02169 Data Sheet
Figure 1-14. RTCSTART = 3.0 k ohm
Differential Output Normalized to value at -40 C
1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1 -40 -30 -20 -10 0
RTCStart = 3.0 k RTCSlope = 25 k 50 k 75 k 100 k 150 k
10 20 30 40 Temperature in C RTCSlope = 50 k RTCSlope = 125 k
50
60
70
80
RTCSlope = 25 k RTCSlope = 100 k
RTCSlope = 75 k RTCSlope = 150 k
Figure 1-15. RTCSTART = 2.0 k ohm
RTCStart = 2.0 k 1.7 Differential Output Normalized to value at -40 C 1.6 1.5 RTCSlope = 25 k 1.4 1.3 1.2 1.1 1 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 Temperature in C RTCSlope = 25 k RTCSlope = 100 k RTCSlope = 50 k RTCSlope = 125 k RTCSlope = 75 k RTCSlope = 150 k 150 k 50 k 75 k
14
Mindspeed TechnologiesTM
02169-DSH-001-C
Functional Description
1.5.6
Step 6: Select ROCASET
The M02169 allows the user to limit the maximum IBIAS current to roughly 10% above the OCASET level. This relationship is shown below in Figure 1-16. When the Bias current exceeds the OCASET level, the OCA flag is asserted, but not latched. Figure 1-16. Room Temperature IBIAS OCA Assert Level vs. R_OCAset
Room Temperature I BIAS OCA Assert Level vs. R_OCAset IBIAS When OCA Asserts (mA) 130 110 90 70 50 30 10 1 10 R_OCAset (k) 100 1000
02169-DSH-001-C
Mindspeed TechnologiesTM
15
M02169 Data Sheet
1.5.7
Step 7: Integrated Output Offset Control (EAM)
The M02169 contains an integral output offset control for reverse biasing an EAM. The relationship of R_Offset and the output voltage is given below in Figure 1-17. Figure 1-17. Modulation Offset Voltage vs. R_Offset
Modulation Offset Voltage vs. R_Offset VMODOUT High level 50 Load (V_DC) 0 -0.2 -0.4 -0.6 -0.8 -1 -1.2 -1.4 -1.6 0 1 2 3 4 R_Offset(k) 5 6 7 8
1.5.8
Step 8: Automatic Power Control (EAM)
The M02169 APC and bias outputs may be used for providing the bias on direct modulated lasers, or as the bias controller for the laser portion of an integrated EAM. When used to bias an integrated EAM, an external current mirror is used. Figure 1-19 in this data sheet shows such an example with the mirror ratio set to 5. Realistic mirror ratios may be as high as 20, and the external current mirror also serves to reduce the overall power dissipation in the M02169. ROCASET should be set to limit the bias current to the minimum level necessary taking into account the gain of the current mirror. Using Figure 1-19 as an example, the bias current mirror gain is 5 and ROCASET should be set to allow a maximum bias current of no more than 25 mA.
16
Mindspeed TechnologiesTM
02169-DSH-001-C
Functional Description
1.6
Applications
Figure 1-18. Application Block Diagram (1) Direct Modulated Laser (DML)
PWAb
PWA
*
V
CEN
EE
Input Buffers D IN+ D IND-FF Output Buffer Laser Driver OUTN OUTP - 0.7 V EEO MODSET RMODSET Modulation Control TCSTART RSTART TCSLOPE RSLOPE VEE IPIN IBIASOUT
V TT
HF Output Offset
CLK+ CLKInput Buffers OFFS CNTL Tx Disable
* *
Automatic Power Control
RMPCSET CMPC
DIS
MODMON
BIASMON
OCA
FAIL
Note: * Denotes a part not needed for a minimum parts count implementation
*
OCA
ROCASET
SET
V
EE
02169-DSH-001-C
Mindspeed TechnologiesTM
17
M02169 Data Sheet
Figure 1-19. Application Block Diagram (2) Electro-Absorbtive (EA) Laser
+3.3 V
*
Denotes a part not needed for a minimum parts count implementation.
EAM
2.2 FTZ788A
15
FTZ688A PWAb PWA CEN
*
V
EE
HF
Input Buffers D IN+ D IND-FF Output Buffer Laser Driver OUTN OUTP V TT - 0.7 Output Offset Modulation Control V EEO
MODSET RMODSET
TCSTART RSTART TCSLOPE RSLOPE VEE
50
CLK+ CLKInput Buffers OFFSCNTL Tx Disable
* *
Automatic Power Control
IPIN IBIASOUT R
MPCSET
MODMON
BIAS MON
DIS
V EE
OCA
FAIL
OCASET
*
C MPC
R OCASET (Note 1) V
EE
Note: 1. RO CASE T should be set to limit the bias current to the minimum level necessary. Using the above components, the bias current mirror gain is 5 and RO CASET should be set to allow a maximum bias current of no more than 25 mA.
18
Mindspeed TechnologiesTM
02169-DSH-001-C
Functional Description
1.7
Table 1-1.
QFN Pin Number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Pin Definitions
Pin Description
Name
PWAb GND DIN+ DINVTT VEE CLK+ CLKGND CEN DIS GND BIASMON MODMON FAIL OCA HF IPIN IBIASOUT OUTN OUTP OUTN NC
Function
Negative pulse width adjust input. A potentiometer between this pin and PWA adjusts output pulse width. Connect PWA and PWAb to VEE to disable this function (3) Ground (4) Positive data input (CML or AC coupled PECL) - Self biased if VTT left floating Negative data input (CML or AC coupled PECL) - Self biased if VTT left floating Termination for 50 CML inputs; connect to ground for DC coupled clock and data inputs, leave floating to AC couple clock and data inputs Power supply (4) Positive clock input (CML or AC coupled PECL). Self Biased if VTT left floating. Can leave disconnected if not used. Data re-timed on rising edge Negative clock input (CML or AC coupled PECL). Self Biased if VTT left floating. Can leave disconnected if not used. Data re-timed on falling edge Ground Clock enable input. Set high to use CLK inputs, Low or floating when not using CLK Inputs (direct data). 80 k internal pull-down to VEE Bias (1) and Modulation Output Disable (TTL/CMOS). Set low or leave floating for normal operation. 80 k internal pull-down to VEE. When high, will disable the bias and modulation outputs. Ground Bias output current monitor. See functional description for detailed information. Connect directly to GND if not used Modulation output current monitor. See functional description for detailed information. Connect directly to GND if not used Automatic Power Control Failure indicator. Goes high when automatic power control loop is not able to maintain constant power (1) Laser over-current alarm. Goes high when laser bias current exceeds level set at OCASET (1) Output compensation control. Set high (GND) for normal operation. When low or floating, output overshoot is decreased and edge speed is slightly slower Monitor photodiode input. Connect this input to the monitor photodiode anode for automatic power control. A resistor connected from this pin to VEE sets laser output power. Leave floating if not using automatic power control (3) Laser bias current output. Connect to laser cathode for DML applications using automatic power control(1). Connect to VEE when not using automatic power control Negative modulation output. Draws current when DIN+ is high. Internally terminated with 50. Connect directly to ground (2) Positive modulation output. Draws current when DIN+ is low. Offset adjustment is integrated into this output and controlled by OFFSCNTL Negative modulation output. Draws current when DIN+ is high. Internally terminated with 50. Connect directly to ground (2) Not used; can connect to VEE, ground or leave floating
02169-DSH-001-C
Mindspeed TechnologiesTM
19
M02169 Data Sheet
Table 1-1.
QFN Pin Number
23 24 25 26 27 28 29 30 31
Pin Description
Name
VEEO VREG CMPC OFFSCNTL TCSLOPE TCSTART GND MODSET OCASET Power supply for modulation output stage (4) Internal regulator voltage. Leave floating A capacitor from this pin to VEE sets the dominant pole for automatic power control. Capacitor not required if APC loop is not used (3) Offset control input. A resistor between this pin and VEE sets the offset level at OUTP. Leave floating if not used Connecting a resistor between this pin and VEE sets the temperature coefficient of modulation current. Leave floating if not used (3) A resistor from this pin to VEE sets the temperature at which the temperature coefficient of modulation current (set by TCSLOPE) is activated. Leave floating if not used (3) Ground (4) Modulation current adjust. Connect a resistor between this pin and VEE to set laser modulation current(3) Temperature-dependent bias current limit. OCA is asserted when this limit is exceeded. Connect a resistor between this pin and VEE to set limit. Defaults to maximum (100 mA) if connected to VEE. Leave floating if not using automatic power control circuitry (3) Positive pulse width adjust input. A potentiometer between this pin and PWAb adjusts output pulse width. Connect PWA and PWAb to VEE to disable this function. (3) Power supply (must be connected to lowest potential) (4)
Function
32 Center pad
PWA VEE
Notes: (1)When using the internal bias current source in DML applications or with an external current mirror as shown in Figure 1-19 for EAM applications. (2)Both sets of OUTN pads or terminals, when connected, result in a 25 load. (3) See additional information in the detailed description. (4) For +5 V operation, the M02169 VEE pins are connected to system ground and the M0269 GND pin is connected to system VCC (+5.0). All connections in the applications diagrams referenced to VEE are now referenced to system ground and all M02169 connections referenced to ground are now referenced to system VCC.
20
Mindspeed TechnologiesTM
02169-DSH-001-C
2.0 Product Specification
2.1
Table 2-1.
Symbol
VEE TA TSTG IBIASOUT (MAX) VOFFS (MAX) VMOD (MAX) IMOD (MAX) PWA, PWAb DIN+/-, CLK+/HF, CEN, DIS BIASMON, MODMON IPIN VTT FAIL, OCA, OCASET, MODSET, OFFSCNTL TCSTART TCSLOPE OUTP Note: (1) EAM applications.
Absolute Maximum Ratings
Absolute Maximum Ratings
Parameter
Power supply voltage Operating ambient temperature Storage temperature Maximum bias output current Maximum output offset voltage
(1)
Rating
-6.0 to +0.4 -40 to +85 -65 to +150 120 1.5 (into 50 load at OUTP) 3.6 (into 50 load at OUTP) 80 -2 to VEE -2 to +0.4 VEE to +0.4 VEE to +0.4 VEE to VEE + 3.6 -2 to +0.4 VEE to VEE + 3.6 VEE to VEE + 1 VEE to VEE + 3.6 VEE to +0.4
Units
V C C mA V V mA V V V V V V V V V V
Maximum modulation voltage (1) Maximum modulation current Pulse width adjust Data and clock inputs Mode control inputs Bias and modulation output current mirror compliance voltage IPIN voltage Termination voltage Status flags and set inputs Temperature compensation start Temperature compensation slope Modulator output
These are the absolute maximum ratings at or beyond which the IC can be expected to fail or be damaged. Reliable operation at these extremes for any length of time is not implied.
02169-DSH-001-C
Mindspeed TechnologiesTM
21
M02169 Data Sheet
2.2
Table 2-2.
Recommended Operating Conditions
Recommended Operating Conditions
Parameter Rating
5.0 +/- 5%, -5.2 +/- 5% -40 to +85
Units
V C
Power Supply Operating Ambient
2.3
DC Characteristics
(VEE = -4.75 to -5.46 V, TA = -40 to +85 C, HF = high, VOUTP = 2.5Vpp, VOFFS = 0.5V, unless otherwise noted)
Table 2-3. Symbol
IEE
DC Electrical Characteristics Parameter
Supply current
Conditions
No retiming (CEN low)
(1)
Minimum
Typical
155 190
Maximum
180 215 100
Units
mA
With retiming and max. modulation(1) IBIAS IBIAS(OFF) Bias current adjust range Bias current with output disabled Ratio of IBIAS current to BIASMON current IOCA VOFFS Bias current limit adjustment range Offset voltage adjust range Ratio of offset voltage to current at OFFSCNTL VMD IMD CEN, DIS CEN, DIS FAIL, OCA FAIL, OCA Monitor diode reverse bias voltage Limited by OCASET across temperature range; V(IBIASOUT) > VEE + 1 V DIS = high V(BIASMON) > VEE + 1 V Point at which OCA asserts Below GND; OUTP terminated into 50 load, VMOD = 0 V OUTP terminated into 50 load = -V(IPIN) 10 VEE+3.0 VEE VEE+3.0 VEE 15 (2) 0 1
mA A A/A
30 60
300
100 (3) 1 0.52 3.8 1500 0 VEE+0.8 VEE+3.6 VEE+0.4
mA V V/mA V A V V V V
Monitor diode current adjustment Guaranteed by design range Logic input high voltage Logic input low voltage Logic output high voltage Logic output low voltage
22
Mindspeed TechnologiesTM
02169-DSH-001-C
Product Specification
Table 2-3. Symbol
RIN ROUT VSELF VINCM VIN(DIFF)
DC Electrical Characteristics Parameter
Single-ended input impedance Single-ended output termination resistance Self-biased common mode input voltage
Conditions
Data and clock inputs (inputs terminated to VTT) OUTP to GND VTT left floating
Minimum
40 48
Typical
55 60 -0.75
Maximum
60 72
Units
W W V
Common-mode input compliance Data and clock inputs (4) voltage Differential input voltage =2*(DIN+HIGH-DIN+LOW) (4) (clock inputs follow same relationship)
-0.8 300
-VIN(DIFF)/4 1600
V mV
Notes: (1). Excludes output modulation, bias, and/or offset current (2). Minimum set point at TA = +25 C (3). Default value at TA = +85 C with OCASET connected to VEE (4).See Figure 2-1
2.4
AC Characteristics
(VEE = -4.75 to -5.46 V, TA = -40 to +85 C, HF = high, VOUTP = 2.5Vpp, VOFFS = 0.5V, unless otherwise noted)
Table 2-4. Symbol
VMOD VMOD(OFF) VMOD(PP)/ IMODMON IMOD-TC
AC Electrical Characteristics Parameter
Modulation voltage adjust range Modulation voltage with output disabled Ratio of peak to peak modulation voltage to MODMON current Programmable range for modulation current temperature coefficient Programmable temperature at which modulation current TC compensation enables Modulation output rise time Modulation output fall time Overshoot of modulation output Setup time
Conditions
OUTP terminated into 50 load OUTP terminated into 50 load; DIS = high OUTP terminated into 50 load; V(MODMON) > VEE + 2 V Adjustable using TCSLOPE (2)
Minimum
1
Typical
Maximum
3 (1) 15
Units
VPP mVPP mV/mA
830
500
104
ppm/C
TTCSTART
Dependent upon TCSTART value (2)
0
60
C
tr tf OS TS
20% to 80% into 50 load. Measured using alternating 1-0 pattern at 2.5 Gbps 20% to 80% into 50 load. Measured using alternating 1-0 pattern at 2.5 Gbps OUTP terminated into 50 load Referenced to 50% transition point of non-inverting clock input going high (CLK+)
26 23 2 15
34 31
ps ps % ps
02169-DSH-001-C
Mindspeed TechnologiesTM
23
M02169 Data Sheet
Table 2-4. Symbol
TH
AC Electrical Characteristics Parameter
Hold time
Conditions
Referenced to 50% transition point of non-inverting clock input going high (CLK+) Measured using 1-0 pattern at 10 Gbps
Minimum
Typical
15
Maximum
Units
ps
PWA RJ DJ
Pulse width adjust range Random jitter, rms Modulation output deterministic jitter Input return loss Output return loss
20 0.3
ps ps 15 ps
Peak-to-peak. Measured into 50 load using 223-1 PRBS at 10 Gbps; using clock inputs (includes PWD) Data and clock inputs; 50 MHz to 10 GHz 50 MHz to 10 GHz
8
S11 S22
-15 -10
dB dB
Notes: (1) |VEE| - VMOD - VOFFS > 1.7 V. Output swing can extend beyond this range but AC specifications may not be met. (2) Guaranteed by design and characterization.
24
Mindspeed TechnologiesTM
02169-DSH-001-C
Product Specification
Figure 2-1.
Data and Clock Input Requirements, Output Description
DIN+
125 mV 800 mV
D IN-
V IN(DIFF)
250 mV 1600 mV
CLK+ 125 mV 800 mV CLK-
0V 0 to -1.0 V
V
(OUTP)
1.0 - 3.0 Vpp
02169-DSH-001-C
Mindspeed TechnologiesTM
25
M02169 Data Sheet
2.5
Figure 2-2.
Package Specification
QFN32 Package Information
Note: View is for a 28 pin package. All dimensions in the tables apply for the 32 pin package
3.15 3.15 0.90 0.70
3.30 3.30
3.45 3.45
26
Mindspeed TechnologiesTM
02169-DSH-001-C
Product Specification
2.6
Figure 2-3.
Pinout Information
QFN32 Pinout Information
OFFS CNTL 26
TC SLOPE
START
SET
SET
32
31
30
29
28
27
25
CMPC
MOD
PWA
GND
OCA
TC
PWAb GND D+
IN
1 2 3 4 5 6 7 8 Center Pad
24 23 22 21 20 19 18 17
V REG V EEO NC OUTN OUTP OUTN I I
D INV TT CLK+ CLKGND
Connect to
V EE
BIASOUT PIN
9 CEN
10 DIS
11 GND
12 BIASMON
13 MOD MON
14 FAIL
15 OCA
16 HF
02169-DSH-001-C
Mindspeed TechnologiesTM
27
M02169 Data Sheet
28
Mindspeed TechnologiesTM
02169-DSH-001-C
(c) 2002, 2003, Mindspeed TechnologiesTM
All rights reserved. Information in this document is provided in connection with Mindspeed Technologies ("Mindspeed") products. These materials are provided by Mindspeed as a service to its customers and may be used for informational purposes only. Mindspeed assumes no responsibility for errors or omissions in these materials. Mindspeed may make changes to specifications and product descriptions at any time, without notice. Mindspeed makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities ari sing from future changes to its specifications and product descriptions. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Mindspeed's Terms and Conditions of Sale for such products, Mindspeed assumes no liability whatsoever. THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MINDSPEED PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT COPYRIGHT OR , OTHER INTELLECTUAL PROPERTY RIGHT. MINDSPEED FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MINDSPEED SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS. Mindspeed products are not intended for use in medical, lifesaving or life sustaining applications. Mindspeed customers using or selling Mindspeed products for use in such applications do so at their own risk and agree to fully indemnify Mindspeed for any damages resulting from such improper use or sale. The following are trademarks of Conexant Systems, Inc.: Mindspeed TechnologiesTM, the MindspeedTM logo, and "Build It First"TM. Product names or services listed in this publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and names are the property of their respective owners. For additional disclaimer information, please consult Mindspeed Technologies Legal Information posted at www.mindspeed.com which is incorporated by reference.
02169-DSH-001-C
Mindspeed TechnologiesTM
27
M02169 Data Sheet
www.mindspeed.com
General Information: U.S. and Canada: (800) 854-8099 International: (949) 483-6996 Headquarters - Newport Beach 4000 MacArthur Blvd., East Tower Newport Beach, CA. 92660


▲Up To Search▲   

 
Price & Availability of M02169Q32-XX

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X