Part Number Hot Search : 
BR205 167BZXI UPA1817 HD71830 AL422V5 ZUMT817 AN0C51BH BDX92
Product Description
Full Text Search
 

To Download FDC653 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 November 1997
FDC653N N-Channel Enhancement Mode Field Effect Transistor
General Description
This N-Channel enhancement mode power field effect transistors is produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications in notebook computers, portable phones, PCMICA cards, and other battery powered circuits where fast switching, and low in-line power loss are needed in a very small outline surface mount package.
Features
5 A, 30 V. RDS(ON) = 0.035 @ VGS = 10 V RDS(ON) = 0.055 @ VGS = 4.5 V. Proprietary SuperSOTTM-6 package design using copper lead frame for superior thermal and electrical capabilities. High density cell design for extremely low RDS(ON). Exceptional on-resistance and maximum DC current capability.
SOT-23
SuperSOTTM-6
SuperSOTTM-8
SO-8
SOT-223
SOIC-16
S D D
1
6
3 .65
G
pin 1
2
5
D D
SuperSOT
TM
3
-6
4
Absolute Maximum Ratings
Symbol Parameter VDSS VGSS ID PD Drain-Source Voltage Gate-Source Voltage - Continuous Drain Current - Continuous - Pulsed Maximum Power Dissipation
T A = 25C unless otherwise note
FDC653N 30 20
(Note 1a)
Units V V A
5 15
(Note 1a) (Note 1b)
1.6 0.8 -55 to 150
W
TJ,TSTG RJA RJC
Operating and Storage Temperature Range
C
THERMAL CHARACTERISTICS Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case
(Note 1a) (Note 1)
78 30
C/W C/W
(c) 1997 Fairchild Semiconductor Corporation
FDC653N Rev.C
ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted)
Symbol Parameter Conditions Min Typ Max Units OFF CHARACTERISTICS BVDSS Drain-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Zero Gate Voltage Drain Current VGS = 0 V, ID = 250 A ID = 250 A, Referenced to 25 o C VDS = 24 V, VGS = 0 V TJ = 55 C IGSSF IGSSR VGS(th) Gate - Body Leakage, Forward Gate - Body Leakage, Reverse VGS = 20 V, VDS = 0 V VGS = -20 V, VDS= 0 V VDS = VGS, ID = 250 A ID = 250 A, Referenced to 25 o C VGS = 10 V, ID = 5 A TJ = 125 C VGS = 4.5 V, ID = 4.2 A ID(on) gFS Ciss Coss Crss tD(on) tr tD(off) tf Qg Qgs Qgd IS VSD
Notes: 1. RJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. RJC is guaranteed by design while RCA is determined by the user's board design. a. 78oC/W when mounted on a minimum on a 1 in2 pad of 2oz Cu in FR-4 board. b. 156oC/W when mounted on a minimum pad of 2oz Cu in FR-4 board. 2. Pulse Test: Pulse Width < 300s, Duty Cycle < 2.0%.
o o
30 31 1 10 100 -100
V mV /oC A A nA nA
BVDSS/TJ
IDSS
ON CHARACTERISTICS (Note 2) Gate Threshold Voltage Gate Threshold VoltageTemp.Coefficient Static Drain-Source On-Resistance 1 1.7 -4.2 0.027 0.042 0.046 8 6.2 0.035 0.056 0.055 A S 2 V mV /oC
VGS(th)/TJ
RDS(ON)
On-State Drain Current Forward Transconductance
VGS = 10 V, VDS = 5 V VDS = 10 V, ID= 5 A VDS = 15 V, VGS = 0 V, f = 1.0 MHz
DYNAMIC CHARACTERISTICS Input Capacitance Output Capacitance Reverse Transfer Capacitance 350 220 80 pF pF pF
SWITCHING CHARACTERISTICS (Note 2) Turn - On Delay Time Turn - On Rise Time Turn - Off Delay Time Turn - Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge VDS = 15 V, ID = 5 A, VGS = 10 V VDD = 10 V, ID = 1 A, VGS = 4.5 V, RGEN = 6 7.5 12 13 6 12 2.1 2.6 15 25 25 15 17 ns ns ns ns nC nC nC
DRAIN-SOURCE DIODE CHARACTERISTICS Continuous Source Diode Current Drain-Source Diode Forward Voltage VGS = 0 V, IS = 1.3 A
(Note 2)
1.3 0.75 0.6 1.2 1 TJ = 125oC
A V
FDC653N Rev.C
Typical Electrical Characteristics
15 I D , DRAIN-SOURCE CURRENT (A) 3.5
6.0
R DS(ON) , NORMALIZED
5.0
12
DRAIN-SOURCE ON-RESISTANCE
VGS = 10V
4.5 4.0
3 2.5
VGS =3.5V
9
4.0
2 1.5 1 0.5
6
3.5
4.5 5.0 6.0 10
3
3.0
0
0
0.5
1
1.5
2
0
3
VDS , DRAIN-SOURCE VOLTAGE (V)
6 9 I D , DRAIN CURRENT (A)
12
15
Figure 1. On-Region Characteristics.
Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.
1.8 DRAIN-SOURCE ON-RESISTANCE
RDS(ON) , NORMALIZED
0.18 R DS(ON) , ON-RESISTANCE (OHM)
I D = 5.0A
1.6 1.4 1.2 1 0.8 0.6 -50
I D =2A
0.15 0.12 0.09
V GS = 10V
TA = 125C
0.06
TA = 25C
0.03 0
-25
0 25 50 75 100 T , JUNCTION TEMPERATURE (C)
J
125
150
2
4 6 8 VGS , GATE TO SOURCE VOLTAGE (V)
10
Figure 3. On-Resistance Variation with Temperature.
Figure 4. On Resistance Variation with Gate-To- Source Voltage.
15
15 I S , REVERSE DRAIN CURRENT (A)
V DS = 5V
VGS =0V
1
I D , DRAIN CURRENT (A)
12
TA= 125C 25C
9
TA = -55C
6
0.1
25C 125C
0.01
-55C
3
0.001
0 1.5
0.0001 2 2.5 3 3.5 4 4.5 VGS , GATE TO SOURCE VOLTAGE (V)
0
0.2
0.4
0.6
0.8
1
1.2
V SD , BODY DIODE FORWARD VOLTAGE (V)
Figure 5. Transfer Characteristics.
Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.
FDC653N Rev.B
Typical Electrical And Thermal Characteristics
1000
10 VGS , GATE-SOURCE VOLTAGE (V)
ID = 5.0A
8
V DS = 5V 10V
CAPACITANCE (pF) 500
Ciss Coss
6
15V
200
4
2
100
f = 1 MHz V GS = 0V
0.3 V
DS
Crss
0 0 2 4 6 8 10 12 14 Q g , GATE CHARGE (nC)
50 0.1
1
3
10
30
, DRAIN TO SOURCE VOLTAGE (V)
Figure 7. Gate Charge Characteristics.
Figure 8. Capacitance Characteristics.
30 10 I D , DRAIN CURRENT (A) 3 1 0.3 0.1 0.03 0.01 0.1
S( ) ON LIM IT
5
100 1m s 10m s
100 ms
RD
us
4 POWER (W)
3
SINGLE PULSE RJA =See note 1b TA = 25C
VGS = 10V SINGLE PULSE RJA = See Note 1b TA = 25C
0.2 0.5 1 2
1s DC
2
1
5
10
30
50
0 0.01
0.1
1
10
100
300
V DS , DRAIN-SOURCE VOLTAGE (V)
SINGLE PULSE TIME (SEC)
Figure 9. Maximum Safe Operating Area.
Figure 10. Single Pulse Maximum Power Dissipation.
1
r(t), NORMALIZED EFFECTIVE TRANSIENT THERMAL RESISTANCE
0.5
D = 0.5
0.2 0.1 0.05
0.2 0.1 P(pk) 0.05 0.02 0.01 Single Pulse
RJA (t) = r(t) * R JA R JA = See Note 1b
t1 TJ - T
A
t2
0.02 0.01 0.0001
= P * R JA(t) Duty Cycle, D = t 1/ t 2
0.01 0.1 t 1, TIME (sec) 1 10 100 300
0.001
Figure 11. Transient Thermal Response Curve.
Note: Thermal characterization performed using the conditions described in note 1b.Transient thermal response will change depending on the circuit board design.
FDC653N Rev.B


▲Up To Search▲   

 
Price & Availability of FDC653

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X