LV5232VH

ві-смоз іс 16ch LED Driver

Overview

The LV5232VH is a semiconductor integrated circuit that incorporates a serial input and serial or parallel output 16-stage shift register that features a CMOS structure based on Bi-CMOS process technology. The LV5232VH also contains an n-channel CMOS construction high-withstand-voltage, large-current drive 16-stage parallel output driver. The protection circuit of the output malfunction is built into.

Function

- Serial input and serial or parallel output
- Enable input for output control
- Serial output enables cascade connection
- Low supply current ($30\mu A$ typ. during standby ICC $\leq 40\mu A$)
- Serial input/output levels compatible with typical CMOS devices
- High-withstand-voltage LED driver with open drain output
 - High withstand voltage (VDS < 42V) High-current drive (I_O max = 100mA)
- Operating temperature range Ta = -25 to $75^{\circ}C$
- Output malfunction protection circuit
 - Reset input pin, V_{CC} decrease voltage confirmation

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max	SV _{CC}	6	V
Output voltage	V _O max	LEDO1 to LEDO16 off	42	V
Output current	I _O max		100	mA
Allowable power dissipation	Pd max	Ta ≤ 25°C *	1100	mW
Operating temperature	Topr		-25 to +75	°C
Storage temperature	Tstg		-40 to +125	°C

* Specified board : 114.3mm × 76.1mm × 1.6mm, glass epoxy board.

Caution 1) Absolute maximum ratings represent the values which cannot be exceeded for any length of time.

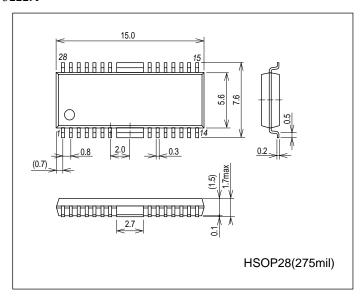
Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

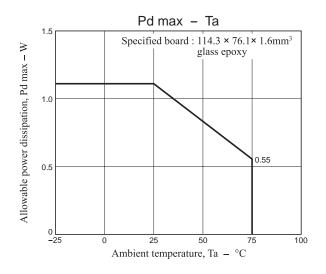
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions at $Ta = 25^{\circ}C$

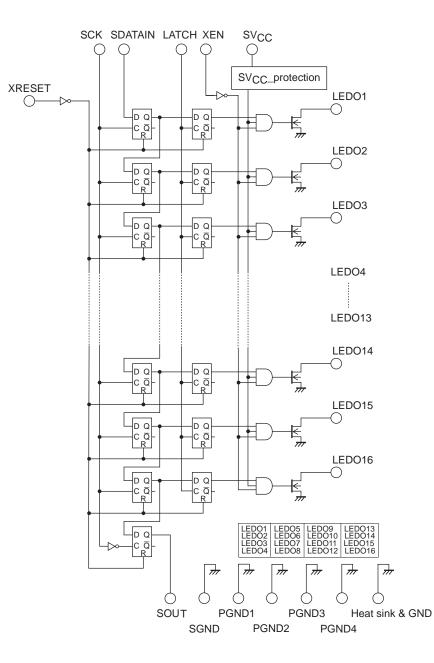
Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}	sv _{CC}	5.0	V
Operating supply voltage range	V _{CC} op	sv _{CC}	3.0 to 5.5	V
Output applied voltage	VO		42	V
Output current	IO	Duty = 45% to 55%	100	mA

ORDERING INFORMATION


See detailed ordering and shipping information on page 9 of this data sheet.


Electrical Characteristics at Ta = 25° C, V_{CC} = 5.0V

Dorometer	Quarteral	Conditions	Ratings			L Locit
Parameter	Symbol	Conditions	min	typ	max	Unit
Quiescent current drain	ICC1	LEDO driver off (standby)		30	40	μA
LEDO output on resistance	Ron	I _O = 30mA		5		Ω
OFF leak current	lleak	V _O = 42V		0	10	μA
Driver output malfunction	Vt		2.58	2.70	2.82	V
prevention voltage						
Control circuit block						
H level 1	V _{IN} H1	Input H level	$V_{CC} \times 0.8$			V
L level 1	V _{IN} L1	Input L level	0		$V_{CC} \times 0.2$	V
H level 2	V _O UTH1	SOUT I _O = -1mA	V _{CC} -0.3			V
L level 2	V _O UTL1	SOUT I _O = 1mA	0		0.3	V


Package Dimensions

unit : mm (typ) 3222A

Block Diagram

Pin Fu	nctions		1
Pin No.	Pin Name	Pin function	Equivalent Circuit
13 16	SDATAIN SCK	Pull-down input	SGND
14 27 28	XRESET LATCH XEN	Pull-up input	XRESET/ LATCH/ XEN SGND
2	SOUT	SOUT output	SVCC SVCC SOUT SOUT
3 4 6 7 8 9 11 12 17 18 20 21 22 23 25 26	LEDO8 LEDO7 LEDO6 LEDO5 LEDO4 LEDO3 LEDO2 LEDO1 LEDO16 LEDO15 LEDO14 LEDO13 LEDO12 LEDO11 LEDO11 LEDO10 LEDO9	LEDO outputs LEDO1 to LEDO16	LEDO1/LEDO2/LEDO3/LEDO4/ LEDO5/LEDO6/LEDO7/LEDO8/ LEDO9/LEDO10/LEDO11/LEDO12/ LEDO13/LEDO14/LEDO15/LEDO16 SVCC SGND PGND

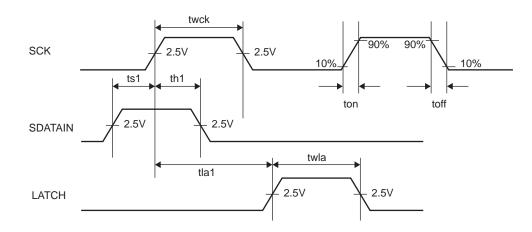
Function

The LV5232VH consists of 1) an 16-stage D-type flip-flop and 2) an 16-stage D-type flip-flop connected to the output of 1). When data is supplied to the serial data input (SDATAIN) and the clock pulse is supplied to the clock input (SCK), the serial data input signal is input to the internal shift register and the data already in the shift register shifted

sequentially when the clock changes from low to high. The serial output (SOUT) is used to connect multiple LV5232VH to expand the number of bits and is connected to the

SDATAIN of the next stage. (Cascade connection supported.) For parallel output, when the output control enable input (XEN) is low, the latch input (LATCH) changes from low to high and the clock pulse input changes from low to high, the serial data input signal is output to LEDO1, and the output

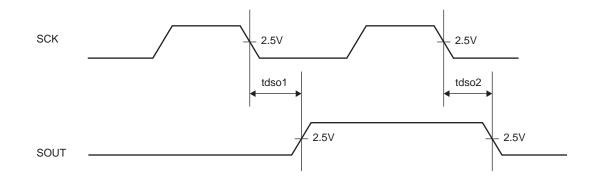
high and the clock pulse input changes from low to high, the serial data input signal is output to LEDO1, and the output is shifted sequentially. For parallel outputs (LEDO2 to LEDO16), the signals whose polarities inverted from those of the serial data input (SDATAIN) are output.


When the EN input is high, outputs LEDO1 through LEDO16 all turn off.

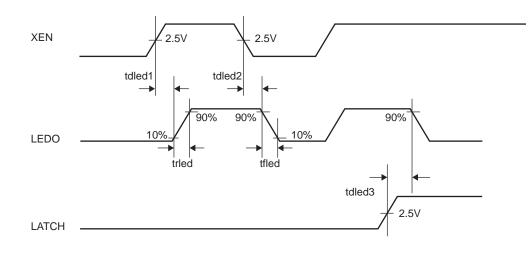
When the reset input is low, outputs LEDO1 through LEDO16 and SOUT outputs all turn off. The power must be turned on after checking that the reset input is low.

To prevent the malfunction, the output load protection circuit is built into. The output of LEDO1 to LEDO16 is compulsorily turned off when becoming below the voltage with a constant there is V_{CC}.

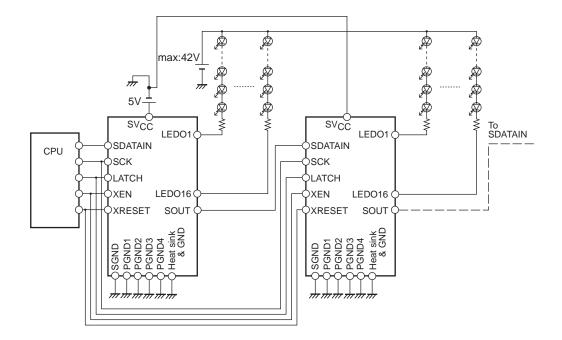
Timing conditions


Parameter	symbol	Conditions	min	typ	max	unit
Clock frequency	fs1	SCK Duty = 50%			10	MHz
Clock pulse width	twck	SCK	50			ns
Latch pulse width	twla	LATCH	50			ns
Data set up time	ts1	SDATAIN setup time relative to the rise of SCK	25			ns
Data hold time	th1	SDATAIN data hold time relative to the rise of SCK	25			ns
Clock latch time	tla1		100			ns
Input conditions 1	ton	SCK and SDATAIN rise time			100	ns
Input conditions 2	toff	SCL and SDATAIN fall time			100	ns

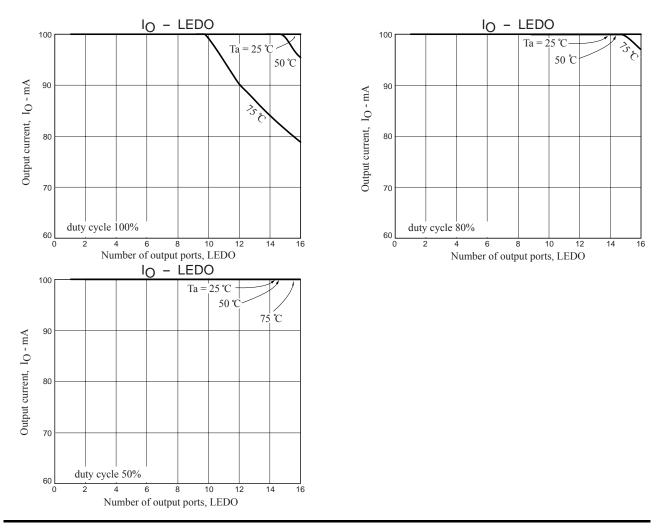
LV5232VH


SOUT output timings

Parameter	symbol	Conditions	min	typ	max	unit
SOUT delay time 1	tdso1	The time from a SCK falling edge to SOUT rising edge			50	MHz
SOUT delay time 2	tdso2	The time from a SCK falling edge to SOUT falling edge			50	ns



LEDO output timings


Parameter	symbol	Conditions	min	typ	max	unit
LEDO delay time 1	tdled1	The time from an XEN rising edge to LEDO rising edge CL = 30pF, I_O = 100mA, V_O = 42V		100		ns
LEDO delay time 2	tdled2	The time from an XEN falling edge to LEDO falling edge CL = 30pF, I_O = 100mA, V_O = 42V		100		ns
LEDO rise time	trled	LEDO rise time CL = 30pF, I _O = 100mA, V _O = 42V		200		ns
LEDO fall time	tfled	LEDO fall time CL = 30pF, I _O = 100mA, V _O = 42V		200		ns
LEDO delay time 3	tdled3	The time from a LATCH rising edge to LEDO falling edge CL = 30pF, I_O = 100mA, V_O = 42V		200		ns

Application Circuit Example

Temperature properties graph

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LV5232VH-TLM-H	HSOP28 (275mil) (Pb-Free / Halogen Free)	2000 / Tape & Reel
LV5232VH-MPB-H	HSOP28 (275mil) (Pb-Free / Halogen Free)	30 / Fan-Fold

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employeer. This literature is subject to all applicable copyright laws and is not for resale in any manner.