

Description

The ACE1420M uses advanced trench technology to provide excellent $R_{DS(ON)}$ and low gate charge. This device is suitable for use as a load switch or in PWM applications. The source leads are separated to allow a Kelvin connection to the source, which may be used to bypass the source inductance.

Features

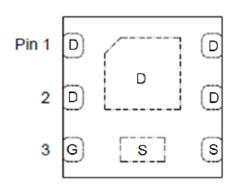
- Low r_{DS(on)} trench technology
- Low thermal impedance
- Fast switching speed

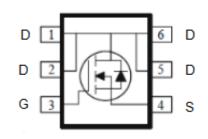
Applications

- Power Routing
- Li Ion Battery Packs
- Level Shifting and Driver Circuits

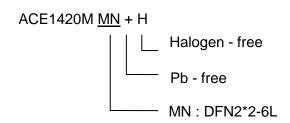
Absolute Maximum Ratings

Absolute waxiinum katings							
Parameter	Symbol	Limit	Units				
Drain-Source Voltage		V_{DS}	20	V			
Gate-Source Volta	V_{GS}	±8	V				
Continuous Drain Current a	T _A =25°C	ı	15	A			
Continuous Diam Current	T _A =70°C	· I _D	11.9				
Pulsed Drain Curre	I _{DM}	60	Α				
Continuous Source Current (Dio	I _S	2.9	Α				
Power Dissipation ^a	T _A =25°C	P _D	3	W			
Fower Dissipation	T _A =70°C	ΓD	1.9	l vv			
Operating temperature / storage	T _J /T _{STG}	-55~150	$^{\circ}\mathbb{C}$				


THERMAL RESISTANCE RATINGS						
Parameter	Symbol	Maximum	Units			
Maximum Junction-to-Ambient ^a	t <= 10 sec	Б	40	°C/W		
	Steady State	$R_{\theta JA}$	90			


Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature


Packaging Type DFN2*2-6L

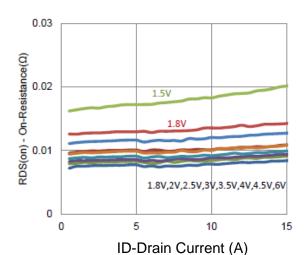
- 1. DRAIN
- 2. DRAIN
- 3. GATE
- 4. SOURCE
- 5. DRAIN
- 6. DRAIN

Ordering information

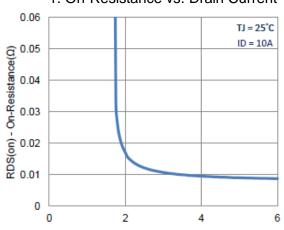
2

Electrical Characteristics

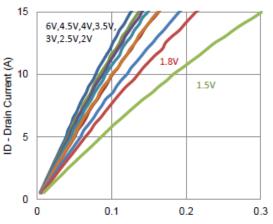
 T_A =25°C, unless otherwise specified.


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit		
Static								
Gate-Source Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250 \text{ uA}$	0.4			V		
Gate-Body Leakage	I_{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			±100	nA		
Zana Cata Valtana Duain Comunit	I_{DSS}	$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}$			1	uA		
Zero Gate Voltage Drain Current		$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			10			
On-State Drain Current	$I_{D(on)}$	$V_{DS} = 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	20			Α		
Drain-Source On-Resistance	D	$V_{GS} = 4.5 \text{ V}, I_{D} = 10 \text{ A}$			9	mΩ		
	R _{DS(ON)}	$V_{GS} = 2.5 \text{ V}, I_D = 8 \text{ A}$			11			
Forward Transconductance	g FS	$V_{DS} = 15 \text{ V}, I_{D} = 10 \text{ A}$		5		S		
Diode Forward Voltage	V _{SD}	$I_{S} = 1.4 \text{ A}, V_{GS} = 0 \text{ V}$		0.74		V		
		Dynamic						
Total Gate Charge	Q_g			20				
Gate-Source Charge	Q_gs	V_{DS} = 10 V, V_{GS} = 4.5 V, I_{D} = 10 A		3.6		nC		
Gate-Drain Charge	Q_{gd}			5.5				
Turn-On Delay Time	t _{d(on)}			6				
Rise Time	t _r	$V_{DS} = 10 \text{ V}, R_L = 1 \Omega, I_D = 10 \text{ A},$		14		ns		
Turn-Off Delay Time	t _{d(off)}	$V_{GEN} = 4.5 \text{ V}, R_{GEN} = 6 \Omega$		84				
Fall Time	t _f			24				
Input Capacitance	C _{iss}			1920				
Output Capacitance	C _{oss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ Mhz}$		160		pF		
Reverse Transfer Capacitance	C _{rss}			143		1		

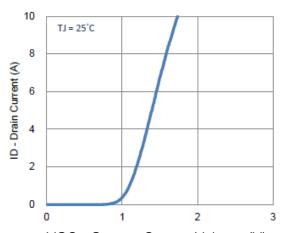
Note:


- Pulse test: PW <= 300us duty cycle <= 2%. a.
- b. Guaranteed by design, not subject to production testing

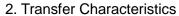
Typical Performance Characteristics

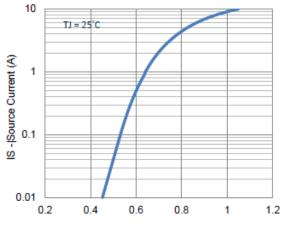


1. On-Resistance vs. Drain Current

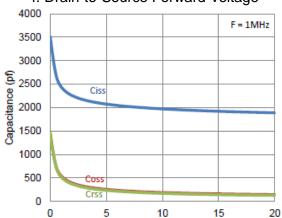

VGS - Gate-to-Source Voltage (V)

3. On-Resistance vs. Gate-to-Source Voltage



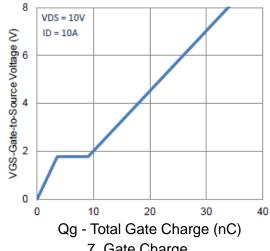

VDS - Drain-to-Source Voltage (V)

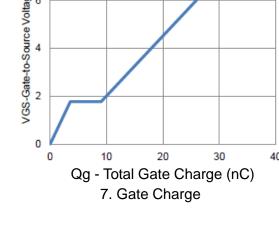
5. Output Characteristics

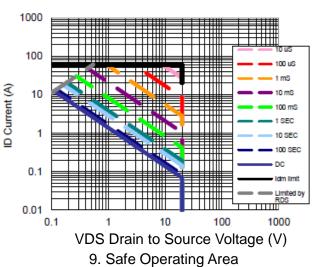

VGS - Gate-to-Source Voltage (V)

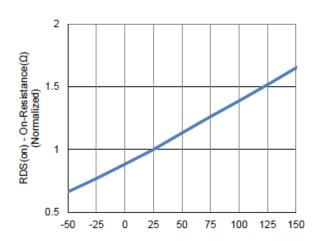
VSD - Source-to-Drain Voltage (V)

4. Drain-to-Source Forward Voltage

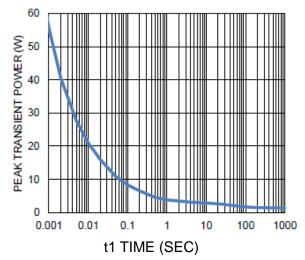

VDS-Drain-to-Source Voltage (V)

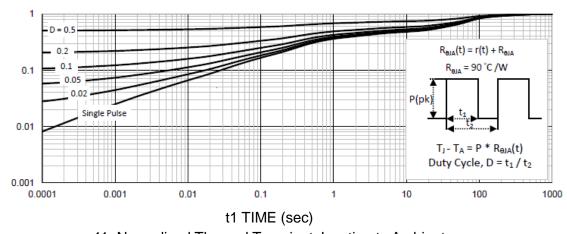

6. Capacitance


4

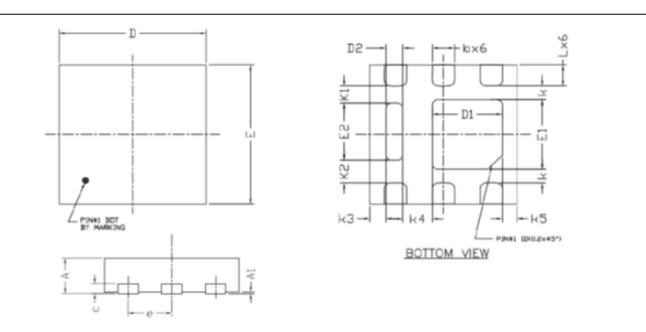


Typical Performance Characteristics





TJ –Junction Temperature(°C) 8. Normalized On-Resistance Vs Junction Temperature


10. Single Pulse Maximum Power Dissipation

11. Normalized Thermal Transient Junction to Ambient

Packing Information DFN2*2-6PP

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIENSIONS IN INCHES			
STIVIDULS	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.50	0.55	0.60	0.020	0.022	0.024	
A1	0.00		0.05	0.000		0.002	
b	0.25	0.30	0.25	0.010	0.012	0.014	
С	0.152REF			0.006REF			
D	1.90	2.00	2.10	0.075	0.0179	0.083.	
D1	0.85	0.95	1.05	0.033	0.037	0.041	
D2	0.13	0.23	0.33	0.005	0.009	0.013	
E	1.90	2.0	2.10	0.075	0.079	0.083	
E1	0.90	1.00	1.10	0.035	0.039	0.043	
E2	0.72	0.82	0.92	0.028	0.032	0.036	
е	0.65BSC			0.026BSC			
K	0.20BSC			0.008BSC			
K1	0.25BSC			0.010BSC			
K2	0.33BSC			0.013BSC			
K3	0.22BSC			0.009BSC			
K4	0.40BSC			0.016BSC			
K5	0.20BSC			0.008BSC			
L	0.25	0.30	0.35	0.010 0.012 0.014			

Unit: mm

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/