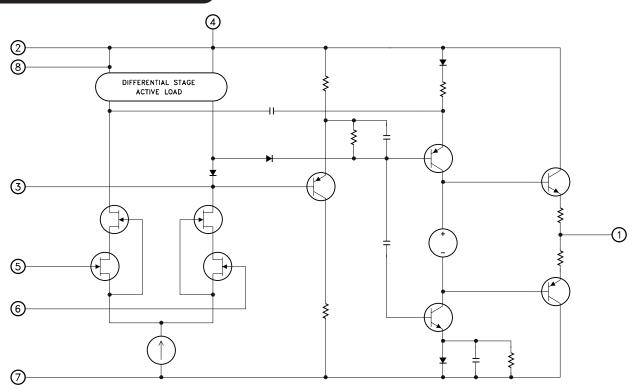
MIL-PRF-38534 AND 38535 CERTIFIED FACILITY

HIGH SPEED, WIDEBAND OPERATIONAL AMPLIFIER

FEATURES:

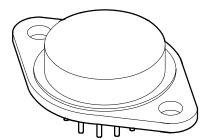
- · Stable at Low Gain
- Fast Slew Rate 1200V/µs Typical
- Gain Bandwidth Product 1200 MHz Typical
- Low Quiescent Current ±14.0 mA Typical
- Low Offset 2 mV Maximum


NSK

- Drop In Replacement for OPA 3554 and TP 3554
- High Output Current ±100mA Minimum
- Contact MSK for MIL-PRF-38534 Qualification Status

DESCRIPTION:

The MSK3554 is a pin compatible, low gain stable, drop-in replacement for the OPA 3554 and TP 3554. The MSK3554 does not exhibit high frequency output oscillations like other versions of the 3554 when operated at closed loop gains of less than 55 V/V. The extremely low input bias current and input offset voltage ratings coupled with a high slew rate and wide bandwidth make the MSK3554 an excellent choice for fast D/A converters, buffers, pulse amplifiers and other high speed op-amp applications. The MSK3554 is packaged in an 8-pin TO-3 using thick film hybrid technology to obtain high reliability and compact size.


EQUIVALENT SCHEMATIC

TYPICAL APPLICATIONS

- Fast D/A Converters
- Pulse Amplifiers
- Video Instrumentation
- Fast Buffer/Follower
- Video Frequency Filters

- PIN-OUT INFORMATION
- 1 Output
- 2 Positive Power Supply
- 3 Compensation
- 4 Balance 1
- 8 Balance 2
- 7 Negative Power Supply
- 6 Non-Inverting Input
- 5 Inverting Input

3554

ABSOLUTE MAXIMUM RATINGS

±Vcc	Supply Voltage±18V
lout	Peak Output Current
Vin	Differential Input Voltage
Tc	Case Operating Temperature
	MSK3554B55°C to +125°C
	MSK355440°C to +85°C

(1)

ELECTRICAL SPECIFICATIONS

Тsт	Storage Temperature Range	to +150°C
Tld	Lead Temperature Range	
	(10 Seconds)	300°C

	Power Dissipation	See Curve
TJ	Junction Temperature	175°C

Deremeter	Toot Conditions	Group A	MSK3554B			MSK3554			
Parameter Test Conditions		Subgroup	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
STATIC									
Supply Voltage Range ③		-	±12	±15	±18	±12	±15	±18	V
Quiescent Current	VIN=0V	1	-	±14	±20	-	±14	±20	mA
	Av=-1v/v	2,3	-	-	±30	-	-	-	mA
Thermal Resistance 3	Junction to Case Output Devices	-	-	37	-	-	37	-	°C/W
INPUT									
Input Offset Voltage	Bal.Pins=N/C VIN=0V Av=-10v/v	1	-	±0.5	±2.0	-	±0.5	±3.0	mV
Input Offset Voltage Drift	VIN=0V	2,3	-	±20	±50	-	±20	-	μV/°C
Input Offset Adjust ③	RPOT=20K Ω To +Vcc Av=-1v/v	1,2,3	Ad	djust to Z	ero	Ad	ljust to Ze	ero	mV
Input Bias Current	Vcm=0V Either Input	1	-	±10	±50	-	±20	±100	pА
		2,3	-	±10	±50	-	-	-	nA
Input Offset Current	Vcm=0V	1	-	±2.0	±25	-	±2.0	±30	pА
		2,3	-	±2.0	±30	-	-	-	nA
Input Impedance ③	F=DC Differential	-	-	10 ¹¹	-	-	10 ¹¹	-	Ω
Power Supply Rejection Ratio	③ Δ Vcc=10V	-	80	110	-	80	110	-	dB
Input Noise Density ③	F=1KHz	-	-	15	-	-	15	-	nV√Hz
Input Noise Voltage ③	F=10Hz To 1MHz	-	-	10.0	-	-	10.0	-	μVrms
OUTPUT									
Output Voltage Swing	RL=100Ω	4	±10.5	±12	-	±10	±12	-	V
Output Current	TJ<150°C	4	±100	±120	-	±100	±120	-	mA
Settling Time ② ③	0.1% 10V step	4	-	120	150	-	120	150	nS
Power Bandwidth ③	RL=100Ω Vo=±10V Cc=0	4	16	19	-	15	19	-	MHz
Bandwidth (Small Signal) ③	Cc=0	4	70	90	-	70	90	-	MHz
TRANSFER CHARACTERISTICS									
Slew Rate	Vout=±10V RL=100Ω Cc=0	4	800	1200	-	750	1200	-	V/µS
Open Loop Voltage Gain ③	Cc=0 RL=100Ω F=1KHz Vout=±10V	4	90	96	-	88	96	-	dB

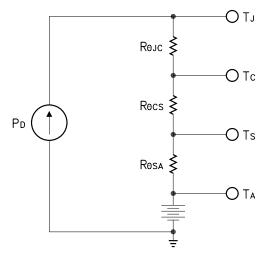
NOTES:

Unless otherwise specified ±VCC=±15VDC
AV=-1, measured in false summing junction circuit.
Devices shall be capable of meeting the parameter, but need not be tested. Typical parameters are for reference only.
Industrial grade devices shall be tested to subgroups 1 and 4 unless otherwise specified.
Military grade devices ('B' suffix) shall be 100% tested to subgroups 1,2,3 and 4.

(i) Minitally grade devices (D sum(x) shall be 100% te
(ii) Subgroup 5 and 6 testing available upon request.
(iii) Subgroup 1,4 TA=TC=+25°C
(iiii) Subgroup 2,5 TA=TC=+125°C

9 Subgroup 3,6 TA=TC=-55°C

(1) Measurement taken .5 second after application of power using automatic test equipment.


(1) Continuous operation at or above absolute maximum ratings may adversely effect the device performance and/or life cycle.

APPLICATION NOTES

HEAT SINKING

Refer to the following thermal model and governing equations to determine appropriate heat sinking for your application.

Thermal Model:

Governing Equation:

 $T_J=PD x (R_{\theta JC} + R_{\theta CS} + R_{\theta SA}) + T_A$

Where

- T_J = Junction Temperature
- PD = Total Power Dissipation
- Rejc = Junction to Case Thermal Resistance
- $R_{\theta CS}$ = Case to Heat Sink Thermal Resistance
- $R_{\theta SA}$ = Heat Sink to Ambient Thermal Resistance
- Tc = Case Temperature
- TA = Ambient Temperature
- Ts = Sink Temperature

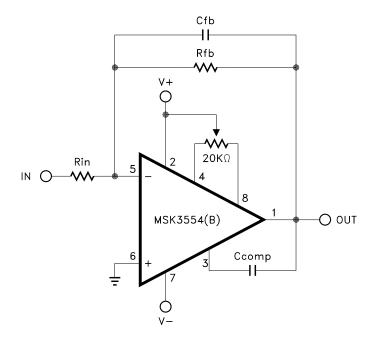
Example:

This example demonstrates a worst case analysis for the op-amp output stage. This occurs when the output voltage is 1/2 the power supply voltage. Under this condition, maximum power transfer occurs and the output is under maximum stress.

Conditions:

Vcc = ± 16 VDC Vo = ± 8 Vp Sine Wave, Freq. = 1KHZ RL = 100 Ω

For a worst case analysis we will treat the +8Vp sine wave as an 8 VDC output voltage.

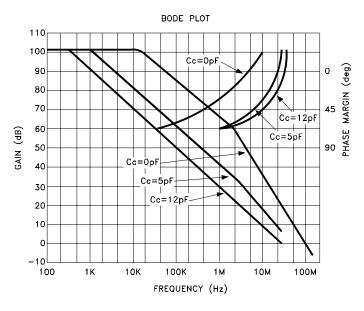

1.) Find Driver Power Dissipation

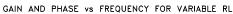
- PD = (VCC-VO) (VO/RL)
 - = (16V-8V) (8V/100Ω) = .64W
- 2.) For conservative design, set TJ=+125°C
- 3.) For this example, worst case TA=+90°C
- 4.) ReJC = 37°C/W from MSK3554B Data Sheet
- 5.) $R_{\theta CS} = 0.15^{\circ}C/W$ for most thermal greases
- 6.) Rearrange governing equation to solve for Resa

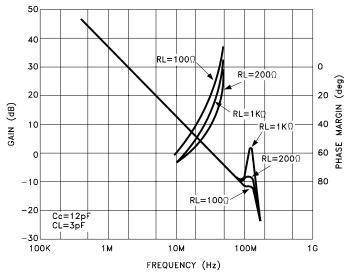
The heat sink in this example must have a thermal resistance of no more than 17.54° C/W to maintain a junction temperature of no more than $+125^{\circ}$ C.

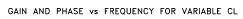
OFFSET NULL

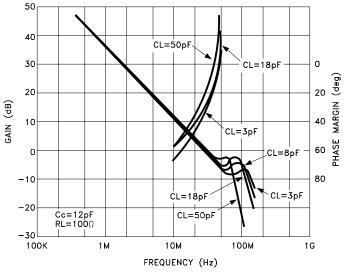
Typically, the MSK3554(B) has an input offset voltage of less than ± 0.5 mV. If it is desirable to adjust the offset closer to "zero", or to a value other than "zero", the circuit below is recommended. Rp should be a ten-turn 20K Ω potentiometer. Typical offset adjust is ± 20 mV.

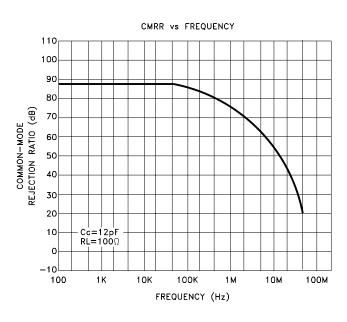


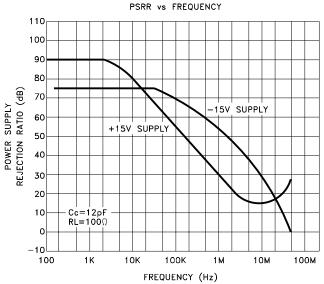

COMPENSATION

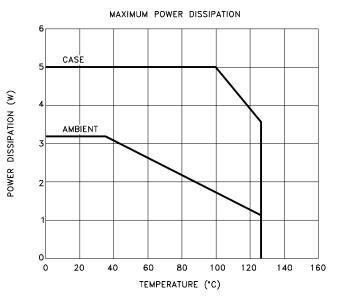

The compensation capacitor is connected between pins 1 and 3 and is used to optimize bandwidth and slew rate while maintaining circuit stability. The effect of compensation capacitance can be seen in the Bode Plot under the Typical Performance Curves. As closed loop gain increases, compensation capacitance can decrease and higher slew rates and wider bandwidths will be realized. See the component selection table for recommended values of input and feedback resistance as well as feedback capacitance and compensation capacitance.

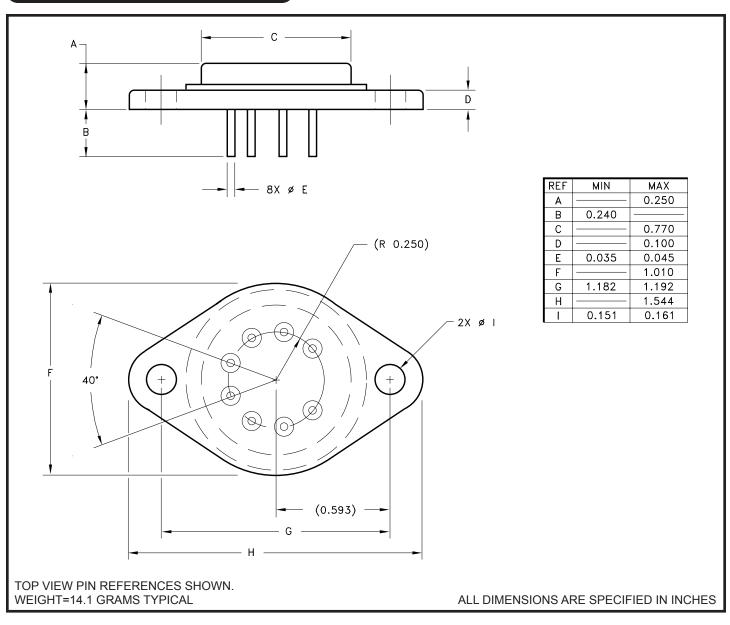

COMPONENT SELECTION TABLE				
GAIN	GAIN Rin Rfb Cfb			Ccomp
-1	5.6KΩ	5.6KΩ	2.0pF	10pF
-10	560Ω	5.6KΩ	1.2pF	10pF
-100	100Ω	10KΩ	0.0pF	0.0pF
follower	0Ω	0Ω	0pF	12pF


TYPICAL PERFORMANCE CURVES









MECHANICAL SPECIFICATIONS

ORDERING INFORMATION

Part Number	Screening Level
MSK3554	Industrial
MSK3554B	Mil-PRF-38534 Class H

REVISION HISTORY

REV	STATUS	DATE	DESCRIPTION
E	Released	10/15	Update format and mechanical specifications.

MSK www.anaren.com/msk

The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make changes to its products or specifications without notice, however, and assumes no liability for the use of its products. Please visit our website for the most recent revision of this datasheet.