CWDM 70KM SFP+ TRANSCEIVERS

TPC 1 XGKZRxG

Product Description

The TPC1XGKZRxG is an enhanced small form factor pluggable (SFP+) fiber optic transceiver with digital diagnostics monitoring functionality (DDM). Supporting Ethernet and Fiber Channel standards makes it ideally suited for high capacity data-com and storage area network applications. DDM functionality (alarm and warning features) is integrated into the design via an I²C serial interface per the Multi-Source Agreement (MSA) SFF-8472, Rev. 10.4.

Each transceiver utilizes an electro absorption modulator integrated laser (EML) with an operating wavelength with selectable to ITU-T standards covering CWDM grid wavelengths. The transceiver supports data rates ranging from 11.3Gbps down to 8Gbps. It provides an excellent solution for data transmission at CWDM wavelength over up to 70km single mode fiber. The low power consumption and excellent EMI performance enable system design with high port density. The product is RoHS compliant and is designed and tested in accordance with industry safety standards. The transceiver is Class I Laser product per U.S. FDA/CDRH and international IEC-60825 standards.

The TPC1XGKZRxG transceiver connects to standard 20-pad SFP+ connectors for hot plug capability. This allows the system designer to make configuration changes or maintenance by simply plugging in different transceivers without removing the power supply from the host system. The transmitter and receiver DATA interfaces are internally AC-coupled. LV-TTL Transmitter Disable control input and Loss of Signal (LOS) output interfaces are also provided. The transceiver has bail-type latch, which offers an easy and convenient way to release the modules.

The transceiver operates from a single +3.3V power supply over an operating case temperature range of 5°C to +70°C (commercial), or -5°C to +85°C (extended) or -40°C to +85°C (industrial). The housing is made of metal for EMI immunity.

Features

- ☑ Temperature-stablized CWDM EML transmitter
- ☑ Transmission distance up to 70km (SM Fiber)
- ☑ Low power consumption
- ☑ Wide case operating temperature range
- ☑ Compliant with SFP+ Electrical MSA SFF-8431
- ☑ Compliant with SFP+ Mechanical MSA SFF-8432
- ☑ Compliant with 10GBASE-E specifications
- ☑ Digital Diagnostics Monitoring (DDM) through Serial Interface comply with SFF-8472, Rev. 10.4
- ☑ RoHS 6/6 Compliant
- ☑ Laser Class 1 IEC/CDRH compliant

Absolute Maximum Ratings

Parameter Storage Temperature Range		Symbol	Minimum	Maximum	Units
		T_{ST}	- 40	+ 85	°C
	"Commercial"		- 5	+ 70	
Operating Case Temperature 1	Extended	T_{OP}	- 5	+ 85	°C
	Industrial		- 40	+ 85	
Operating Relative Humidity ²		RH	0	85	%
Supply Voltage Range		V_{cc}	- 0.5	+ 3.6	V
Input Optical Power (Damage Thres	shold)	Pin,damage	-	0	dBm

 $^{^{\}mbox{\tiny 1}}$ Measured on top side of SFP+ module at the front center vent hole of the cage.

² Non condensing

Transmitter Performance Characteristics (Over Operating Case Temperature. $V_{cc} = 3.13$ to 3.47V)

Parameter	Symbol	Minimum	Typical	Maximum	Units
Data Rate	В	-	10.3125	-	Gb/s
Center Wavelength 1	λ_{c}	See C	Ordering Information	Table	nm
Center Wavelength Tolerance	-	- 6.5	-	+ 6.5	nm
Average Optical Output Power	P_{Avg}	0	-	+ 4	dBm
Extinction Ratio	ER	8.2	-	-	dB
Relative Intensity Noise	RIN	-	-	- 128	dB/Hz
Side Mode Suppression Ratio	SMSR	30	-	-	dB
Optical Return Loss Tolerance	-	-	-	- 21	dB
Optical Output Eye		Сотр	liant with IEEE 802.	3ae	

Receiver Performance Characteristics (Over Operating Case Temperature. $V_{cc} = 3.13$ to 3.47V)

Parameter		Symbol	Minimum	Typical	Maximum	Units
Data Rate	Data Rate		-	10.3125	-	Gb/s
Wavelength of Operation		λ	1450	-	1620	nm
Receiver Sensitivity	1471~1551nm	ח	-	-	- 23.0	dBm
@ 10.3125Gb/s	1571~1611nm	$P_{min\ BB}$	-	-	- 21.0	abin
Receiver Sensitivity with	1471~1551nm	ח	-	-	- 20.0	dBm dBm
70km fiber @ 10.3125Gb/s	1571~1611nm	$P_{\it min~Fiber}$	-	-	- 18.0	
Maximum Input Power (10 -1	BER)	Pmax	- 8	-	-	dBm
Receiver Reflectance		-	-	-	- 27	dB
LOS Hysteresis		-	0.5	-	-	dB
LOS Thresholds	Increasing Light Input	Plos+	-	-	- 25	dBm
LOS Inresnoias	Decreasing Light Input	Plos-	- 38	-	-	usm

Note: The specified characteristics are met within the recommended range of operation. Unless otherwise noted typical data are quoted at nominal voltage and $+25^{\circ}$ C ambient temperature.

Laser Safety:

All transceivers are Class I Laser products per FDA/CDRH and IEC-60825 standards. They must be operated under specified operating conditions.

Oplink Communications, Inc.
DATE OF MANUFACTURE:

This product complies with

vith csus

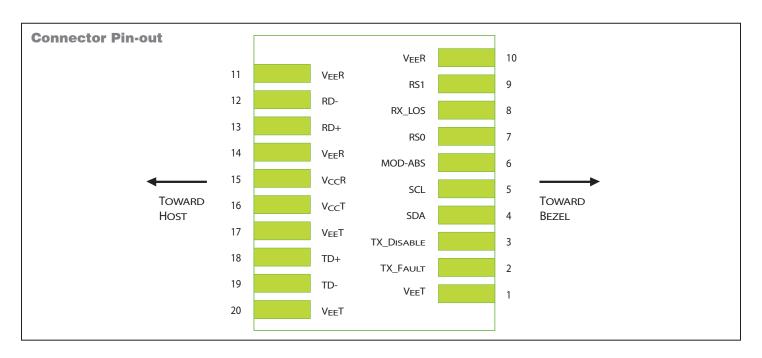
21 CFR 1040.10 and 1040.11

Meets Class I Laser Safety Requirements

Transmitter Electrical Characteristics (Over Operating Case Temperature. $V_{cc} = 3.13$ to 3.47V)

Parameter	Symbol	Minimum	Typical	Maximum	Units
Differential Input Impedance	Z_d	-	100	-	Ω
Differential Input Voltage Swing	$V_{_{PP\text{-}DIFF}}$	180	-	700	mV
Input HIGH Voltage (TX Disable) 1	$V_{_{I\!H}}$	2.0	-	V_{cc}	V
Input LOW Voltage (TX Disable) 1	$V_{{\scriptscriptstyle IL}}$	0	-	0.8	V
Output HIGH Voltage (TX Fault) ²	V_{OH}	2.0	-	V _{CC} + 0.3	V
Output LOW Voltage (TX Fault) ²	$V_{\scriptscriptstyle OL}$	0	-	0.8	V

 $^{^1}$ There is an internal 4.7k Ω to 10k Ω pull-up resistor to VccT.


Receiver Electrical Interface (Over Operating Case Temperature. $V_{cc} = 3.13$ to 3.47V)

Parameter	Symbol	Minimum	Typical	Maximum	Units
Differential Output Impedance	Z_d	-	100	-	Ω
Differential Output Swing	$V_{\tiny PP\text{-}DIFF}$	300	-	850	mV
Output Rise and Fall time (20% to 80%)	t_{RH} , t_{FH}	28	-	-	ps
Output HIGH Voltage (LOS) 1	V_{OH}	V _{CC} - 1.3	-	$V_{CC} + 0.3$	V
Output LOW Voltage (LOS) 1	V_{OL}	0	-	0.8	V
1 Open collector compatible, 4.7kΩ to 10kΩ pull-up res	istor to Vcc (Host	Supply Voltage).			

Electrical Power Supply Characteristics (Over Operating Case Temperature. $V_{cc} = 3.13$ to 3.47V)

Parameter	Symbol	Minimum	Typical	Maximum	Units
Power Supply Voltage	V_{cc}	3.13	3.30	3.47	V
DC Common Mode Voltage	V_{CM}	0	-	3.6	V
Supply Current	I_{VCC}	-	365	-	mA
Power Consumption	P_W	-	1.2	-	W

Note: The specified characteristics are met within the recommended range of operation. Unless otherwise noted typical data are quoted at nominal voltage and $+25^{\circ}$ C ambient temperature.

²Open collector compatible, $4.7k\Omega$ to $10k\Omega$ pull-up resistor to Vcc (Host Supply Voltage).

Module Pin Description

Pin	Logic	Symbol	Description	
1	-	VeeT	Module Transmitter Ground	
2	LVTTL-O	TX_Fault	Module Transmitter Fault	
3	LVTTL-I	TX_Disable	Transmitter Disable; Turns off transmitter laser output	
4	LVTTL-I/O	SDA	2-Wire Serial Interface Data Line	
5	LVTTL-I/O	SCL	2-Wire Serial Interface Clock	
6	-	MOD-ABS	Module Definition, Grounded in the module	
7	LVTTL-I	RS0	No function implemented	
8	LVTTL-O	RX_LOS	Receiver Loss of Signal Indication	
9	LVTTL-I	RS1	No function implemented	
10	-	VeeR	Module Receiver Ground	
11	-	VeeR	Module Receiver Ground	
12	CML-O	RD-	Receiver Inverted Data Output	
13	CML-O	RD+	Receiver Non-Inverted Data Output	
14	-	VeeR	Module Receiver Ground	
15	-	VccR	Module Receiver 3.3V Supply	
16	-	VccT	Module Transmitter 3.3V Supply	
17	-	VeeT	Module Transmitter Ground	
18	CML-I	TD+	Transmitter Non-Inverted Data Input	
19	CML-I	TD-	Transmitter Inverted Data Input	
20	-	VeeT	Module Transmitter Ground	

Application Notes

Electrical Interface: All signal interfaces are compliant with the SFP+ MSA specification. The high speed DATA interface is differential AC-coupled internally and can be directly connected to a 3.3V SERDES IC. All low speed control and sense output signals are open collector TTL compatible and should be pulled up with a $4.7 k\Omega$ - $10 k\Omega$ resistor on the host board.

Loss of Signal (LOS): The Loss of Signal circuit monitors the level of the incoming optical signal and generates logic HIGH when an insufficient photocurrent is produced.

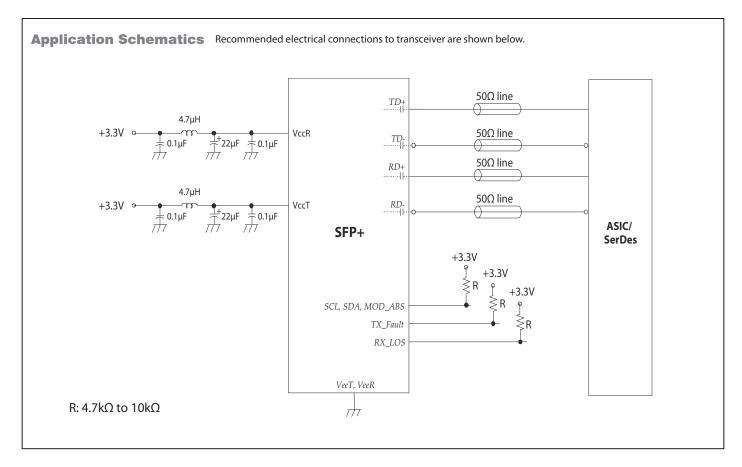
TX_Fault: The output indicates LOW when the transmitter is operating normally and HIGH with a laser fault including laser end-of-life. TX Fault is an open collector/drain output and should be pulled up with a $4.7k\Omega$ - $10k\Omega$ resistor on the host board.

TX_Disable: When the TX Disable pin is at logic HIGH, the transmitter optical output is disabled. The laser is also disabled if this line is left floating, as it is pulled high inside the transceiver.

Serial Identification and Monitoring: The module definition

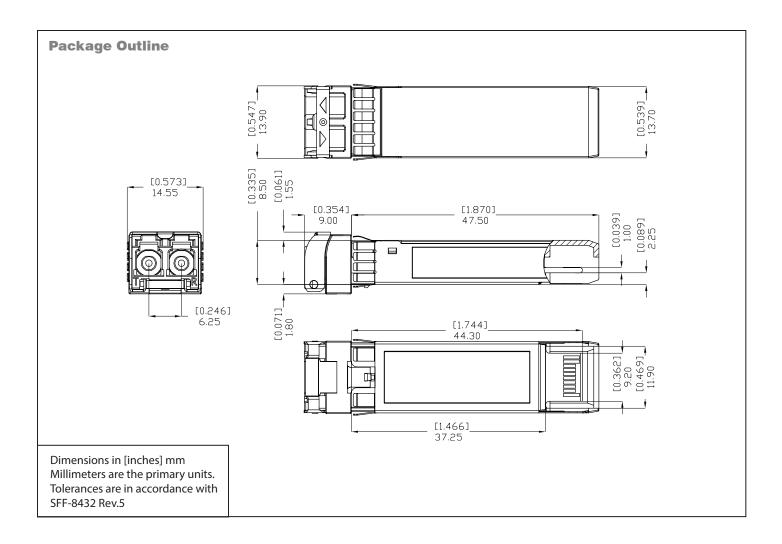
of SFP is indicated by the MOD_ABS pin and the 2-wrie serial interface. Upon power up, the 2-wrie interface appears as NC (no connection), and MOD_ABS is TTL LOW. When the host system detects this condition, it activates the serial protocol (standard two-wire I²C serial interface) and generates the serial clock signal (SCL). The positive edge clocks data into the EEPROM segments of the device that are not write protected, and the negative edge clocks data from the device. The serial data signal (SDA) is for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The supported monitoring functions are temperature, voltage, bias current, transmitter power, average receiver signal, all alarms and warnings, and software monitoring of TX Fault/LOS. The device is internally calibrated.

The data transfer protocol and the details of the mandatory and vendor specific data structures are defined in the SFP MSA, and SFF-8472, Rev. 10.4.


Power Supply and Grounding: The power supply line should be well-filtered. All power supply bypass capacitors should be as close to the transceiver module as possible.

Interfacing the Transceivers

Communication is via a serial 2-wire serial interface. As described in the document SFF-8472 (REV. 10.4) there are two distinct address spaces:


Base Address A0(hex)				
Byte Address Content				
0 – 95	Serial Transceiver ID as defined in SFP MSA			
96 – 127	OPLINK Specific			
128 – 255	Reserved			

	Base Address A2(hex)					
Byte Address	Content					
0 - 55	Alarm & Warnings thresholds & limits					
56 - 95	External calibration constants (not used)					
96 – 119	Values from real time diagnostic monitoring					
120 – 127	Not used					
128 – 247	Customer specific, writable area					
248 - 255	Not used					

ESD & Electromagnetic Compatibility

Requirements	Standard	Status
Electro Static Discharge to the Electrical Pins (ESD)	EIA/JESD22-A114-B MIL-STD 883C Method 3015.7	Exceeds requirements Class 1B (>1000V)
Immunity to ESD (housing, receptacle)	IEN 61000-4-2	Exceeds requirements Discharges ranging from 2kV to 15kV without damages to the transceiver
Electromagnetic Emission (EMI)	FCC Part 15, Class B EN 55022 Class B CISPR 22	Exceeds requirements Class B

Ordering Information

Oplink can provide a remarkable range of customized optical solutions. For detail, please contact Oplink's Sales and Marketing for your requirements and ordering information (510) 933-7200 or Sales@oplink.com.

Model Name	Operating Te	mperature	Center	Latch Color	Distance	
Oplink Part Number		poruturo	Wavelength			
TPC1XGKZRC00010G	- 5°C to +70°C	Commercial	1471nm	White	70km	
TPC1XGKZRC00020G	- 5°C to +70°C	Commercial	1491nm	White	70km	
TPC1XGKZRC00030G	- 5°C to +70°C	Commercial	1511nm	White	70km	
TPC1XGKZRC00040G	- 5°C to +70°C	Commercial	1531nm	White	70km	
TPC1XGKZRC00050G	- 5°C to +70°C	Commercial	1551nm	White	70km	
TPC1XGKZRC00060G	- 5°C to +70°C	Commercial	1571nm	White	70km	
TPC1XGKZRC00070G	- 5°C to +70°C	Commercial	1591nm	White	70km	
TPC1XGKZRC00080G	- 5°C to +70°C	Commercial	1611nm	White	70km	
TPC1XGKZRE00010G	- 5°C to +85°C	Extended	1471nm	White	70km	
TPC1XGKZRE00020G	- 5°C to +85°C	Extended	1491nm	White	70km	
TPC1XGKZRE00030G	- 5°C to +85°C	Extended	1511nm	White	70km	
TPC1XGKZRE00040G	- 5°C to +85°C	Extended	1531nm	White	70km	
TPC1XGKZRE00050G	- 5°C to +85°C	Extended	1551nm	White	70km	
TPC1XGKZRE00060G	- 5°C to +85°C	Extended	1571nm	White	70km	
TPC1XGKZRE00070G	- 5°C to +85°C	Extended	1591nm	White	70km	
TPC1XGKZRE00080G	- 5°C to +85°C	Extended	1611nm	White	70km	
TPC1XGKZRI00010G	- 40°C to +85°C	Industrial	1471nm	White	70km	
TPC1XGKZRI00020G	- 40°C to +85°C	Industrial	1491nm	White	70km	
TPC1XGKZRI00030G	- 40°C to +85°C	Industrial	1511nm	White	70km	
TPC1XGKZRI00040G	- 40°C to +85°C	Industrial	1531nm	White	70km	
TPC1XGKZRI00050G	- 40°C to +85°C	Industrial	1551nm	White	70km	
TPC1XGKZRI00060G	- 40°C to +85°C	Industrial	1571nm	White	70km	
TPC1XGKZRI00070G	- 40°C to +85°C	Industrial	1591nm	White	70km	
TPC1XGKZRI00080G	- 40°C to +85°C	Industrial	1611nm	White	70km	