

Description

ACE1613B uses advanced trench technology to provide excellent $R_{DS(ON)}$. This device particularly suits for low voltage application such as power management of desktop computer or notebook computer power management, DC/DC converter.

Features

- VDS =25V, ID=60A, VGS 20V
- RDS(ON)@V_{GS}=10V, I_{DS}=40A, Typ 4.8mΩ
- RDS(ON)@V_{GS}=4.5V, I_{DS}=20A, Typ 6.0mΩ

Absolute Maximum Ratings

Parameter		Symbol	Max	Unit
Drain-Source Voltage		V _{DSS}	25	V
Gate-Source Voltage		V _{GSS}	±20	V
Mounted on PCB of Minimum Footprint	Pulsed Drain Current (Note 2)	I _{DM}	150	Α
	Continuous Drain Current (Note 1)	I _D	17	Α
	Total Power Dissipation (Note 1)	PD	1.5	W
Mounted on PCB of 1in ² Pad Area	Pulsed Drain Current (Note 2)	I _{DM}	150	Α
	Continuous Drain Current (Note 1)	I _D	22	Α
	Total Power Dissipation (Note 1)	PD	2.5	W
Mounted on Large Heat Sink	Pulsed Drain Current (Note 2)	I _{DM}	150	А
	Continuous Drain Current (Note 1)	I _D	60 (Note 3)	А
	Total Power Dissipation (Note 1)	PD	50	W
Operating Junction Temperature / Storage Temperature Range			-55/150	O°

Packaging Type

TO-252

Ordering information

Electrical Characteristics

 $T_A=25^{\circ}C$, unless otherwise specified.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit			
Static									
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =250uA	25	27		V			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{DS}=250$ uA	1.5	1.8	2.4				
Gate Leakage Current	I _{GSS}	$V_{DS}=0V, V_{GS}=\pm 20V$			±100	nA			
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =24V, V _{GS} =0V			1	uA			
Drain-Source	Б	V _{GS} =10V, I _D =40A		4.8	6.0	mΩ			
On-Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =20A		6.0	9.0				
Forward Transconductance	gfs	$V_{DS}=5V,I_{D}=5A$		7.3		S			
Diode Forward Voltage	V _{SD}	I _S =10A, V _{GS} =0V		0.86	1	V			
Turn-On Delay Time	td(on)	V_{GS} =10V, I_{DS} =1A, V_{DS} =15V, R_{GEN} =6 Ω , R_{L} =15 Ω		18		nS			
Turn-Off Delay Time	td(off)			61					
Input Capacitance	Ciss	V _{GS} =0V, V _{DS} =15V, f=1MHz		2650		- pF			
Output Capacitance	Coss			910					
Reverse Transfer Capacitance	Crss			774					

Note:

1. DUT is mounted on a 1in 2 FR-4 board with 2oz. Copper in a still air environment at 25°C, the current rating is based on the DC

(<10s) test conditions.

2. Repetitive rating, pulse width limited by junction temperature. 300us Pulse Drain Current Tested.

3. Current limited by bond wire.

Typical Performance Characteristics (N-Channel)

Fig1:Drain-Source Voltage vs Drain Current

Fig2. Source-Drain Voltage vs Source Current

Fig6:Junction Temperature VS ON Resistanc

Typical Performance Characteristics

Packing Information

TO-252

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/