

Designers Data Sheet

RECTIFIER ASSEMBLY

... utilizing individual void-free molded MR2500 Series rectifiers, interconnected and mounted on an electrically isolated aluminum heat sink by a high thermal-conductive epoxy resin.

- 400 Ampere Surge Capability
- Electrically Isolated Base
- · Fast Recovery Available on Request
- Cost Effective in Lower Current Applications

Designers Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves – representing boundaries on device characteristics – are given to facilitate "worst case" design.

MDA980-1 thru MDA980-6 MDA990-1 thru MDA990-6

SINGLE-PHASE FULL-WAVE BRIDGE

12 and 30 AMPERES 50 thru 600 VOLTS

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating		Symbol	-1	-2	-3	-4	- 5	-6	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		VRRM VRWM VR	50	100	200	300	400	600	Volts
RMS Reverse Voltage	·	VR(RMS)	35	70	140	210	280	420	Volts
DC Output Voltage Resistive Load Capacitive Load		Vdc Vdc	30 50	62 100	124 200	185 300	250 400	380 600	Volts
,	DA980 DA990	10	12 30						
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions)		IFSM	300						Amp
Operating and Storage Junction Temperature Range		T _J ,T _{stg}	-65 to +175						°C

THERMAL CHARACTERISTICS

Characteristic			Symbol	Тур	Max	Unit
Thermal Resistance, Junction to Case		MDA980	Rejc	8.5	11	°C/W
	Each Die	MDA990		4.5	6.0	
	Effective Bridge	MD A980	Rθ(EFF)	-	6.05	°C/W
		MD A990	1		2.28	

ELECTRICAL CHARACTERISTICS (To = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (Per Diode)		V _E				Volts
(if = 18.9 A)	MDA980	1.	-	0.88	0.97	
(iF = 47 A)	MD A990		_	0.98	1.07	l
(ig = 18.9 A, T _{.J} = 175°C)	MDA980	1 1	_	_	0.85	
(i _F = 47 A, T _J = 175°C)	MDA990		-	_	0.98	
Reverse Current		I _B				mA
(Rated V_{RM} applied to ac terminals, + and - terminals open)			-	_	0.5	

16

MAXIMUM CURRENT RATINGS, BRIDGE OPERATION

TC, CASE TEMPERATURE (°C)

T_C, CASE TEMPERATURE (°C)

TYPICAL DYNAMIC CHARACTERISTICS (EACH DIODE)

FIGURE 11 - POWER DISSIPATION

IF(AV), AVERAGE FORWARD CURRENT (AMP)

FIGURE 12 - CURRENT VERSUS AMBIENT TEMPERATURE

NOTE 1 — THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices where there is coupling of heat between die, the junction temperature can be calculated as follows:

(1)
$$^{\Delta}T_{J1} = R_{\theta 1}P_{D2} + R_{\theta 2}K_{\theta 2}P_{D2} + R_{\theta 3}K_{\theta 3}P_{D3} + R_{\theta 4}K_{\theta 4}P_{D4}$$

Where ΔT_{J1} is the change in junction temperature of diode 1

 $R_{\theta\,1}$ thru 4 is the thermal resistance of diodes 1 through 4.

 P_{D1} thru 4 is the power dissipated in diodes 1 through 4 $K_{\theta\,2}$ thru 4 is the thermal coupling between diode 1 and diodes 2 through 4.

An effective package thermal resistance can be defined as follows:

(2) $R_{\theta}(EEE) = \Delta T_{J1}/P_{DT}$

Where: PDT is the total package power dissipation.

Assuming equal thermal resistance for each die, equation (1) simplifies to

(3)
$$\Delta T_{J1} = R_{\theta 1}(P_{D1} + K_{\theta 2}P_{D2} + K_{\theta 3}P_{D3} + K_{\theta 4}P_{D4})$$

For the condition where $P_{D1} = P_{D2} = P_{D3} = P_{D4}$, $P_{DT} = 4P_{D1}$ equation (3) can be further simplified and by substituting into equation (2) results in

(4)
$$R_{\theta}(EFF) = R_{\theta 1} (1 + K_{\theta 2} + K_{\theta 3} + K_{\theta 4})/4$$

For the MDA980 rectifier assembly, thermal coupling between opposite diodes is 42% and between adjacent diodes is 50% when the case temperature is used as a reference. Similarly for the MDA990, thermal coupling between opposite diodes is 12% and between adjacent diodes is 20%.

NOTE 2 - SPLIT LOAD DERATING INFORMATION

Bridge rectifiers are used in two basic configurations as shown in circuits A and B of Figure 13. The current derating data of Figures 5 and 6 apply to the standard bridge circuit (A) where $I_A = I_B$. For circuit B where $I_A \neq I_B$, derating information can be calculated as follows:

(5)
$$T_{R(MAX)} = T_{J(MAX)} - \triangle T_{J1}$$

Where $T_{R(MAX)}$ is the reference temperature (either case or ambient)

ATJ1 can be calculated using equation (3) in Note 1.

For example, to determine $T_{\mbox{C(MAX)}}$ for the MDA990 with the following capacitive load conditions:

IA = 20 A average with a peak of 86 A

I_B = 10 A average with a peak of 72 A

First calculate the peak to average ratio for I_A. $1(p_K)/1(A_V) \approx 86/10 = 8.6$. (Note that the peak to average ratio is on a per diode basis and each diode provides 10A average).

From Figure 11, for an average current of 20 A and an $I(PK)/I_{(A|V)}=8.6$ read $P_{DT}(A|V)=40$ watts or 10 watts/diode. Thus $P_{D1}=P_{D3}=10$ watts.

Similarly, for a load current I_B of 10 A, diode #2 and diode #4 each see 5.0 A average resulting in an $I_{(PK)}/I_{(AV)} \approx 14.4$

Thus, the package power dissipation for 10 A is 20.2 watts or 5.05 watts/diode. .: $P_{D2} = P_{D4} = 5.05$ watts.

The maximum junction temperature occurs in diodes #1 and #3. From equation (3) for diode #1 $\Delta T_{J1} = 5.6$ [10 + 0.12 (5.05) + 0.2 (10) + 0.2 (5.05)].

Thus $T_{C(MAX)} = 175-76 = 99^{\circ}C$

The total package dissipation in this example is:

 $P_J = 2 \times 10 + 2 \times 5.05 \approx 30.1 \text{ watts}$

(Note that although maximum $R_{\theta,JC}$ is 6^{o} C/W, 5.6^{o} C/watt is used in this example and on the derating data as it is unlikely that all four die in a given package would be at the maximum value).

FIGURE 13 – BASIC CIRCUIT USES FOR BRIDGE RECTIFIERS

CIRCUIT A

CIRCUIT B

16

MECHANICAL CHARACTERISTICS

CASE: Transfer-molded plastic encapsulation

POLARITY: Terminal-designation embossed on case

+DC output

-DC output

AC not marked

MOUNTING POSITION: Bolt down-highest heat transfer efficiency accomplished through the surface opposite the terminals.

WEIGHT: MDA980 -- 21 grams (approx.) MDA990 -- 22.5 grams (approx.)

TERMINALS: Suitable for fast-on connections, readily solderable connections,

corrosion resistant.

MOUNTING TORQUE: 20 in. lb. Max.

OUTLINE DIMENSIONS

