OKI Semiconductor

MSM6648

100-DOT COMMON DRIVER

GENERAL DESCRIPTION

The MSM6648 is an LCD dot matrix common driver of a CMOS IC which consists of two 50-bit bi-directional shift registers, each bit level shifter, and a 4-level driver.

The MSM6648 is equipped with 100 LCD output pins. By connecting more than two MSM6648s in cascade, this LSI is applicable to a wide LCD panel.

FEATURES

Logic supply voltage
 LCD drive voltage
 Applicable LCD duty
 2.7 to 5.5 V
 18 to 28 V
 1/200 to 1/240

• Suitable for bath panel sizes of 400 (200 × 2) and 480 (240 × 2) in common numbers by the use of intermediate data input and 10-bit bypass function.

Structure

TCP mounting with 35 mm wide film

Sn-plated

Outer lead pitch : 220 µm User area : 10.8 mm

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

Pin	Symbol	Pin	Symbol
1	V _{1L}	11	1050
2	V _{2L}	12	V _{SS}
3	V _{5L}	13	DF
4	V _{EEL}	14	CP
5	MODE1	15	101
6	10100	16	MODE2
7	DISP OFF	17	V _{EER}
8	V _{DD}	18	V _{5R}
9	SHL	19	V _{2R}
10	1051	20	V _{1R}

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage (1)	V _{DD}	Ta = 25°C	-0.3 to +6.5	٧
Power Supply Voltage (2)	V _{DD} -V _{EE} *1	Ta = 25°C	0 to 30	٧
Input Voltage	V _I	Ta = 25°C	-0.3 to V _{DD} + 0.3	V
Storage Temperature	T _{STG}	_	-30 to +85	°C

*1
$$V_1 > V_2 > V_5 > V_{EE}$$
, $V_{DD} \ge V_1 > V_2 \ge V_{DD} - 10V$, $V_{EE} + 10V \ge V_5 > V_{EE}$
 $V_1 = V_{1L} = V_{1R}$, $V_2 = V_{2L} = V_{2R}$, $V_5 = V_{5L} = V_{5R}$, $V_{EE} = V_{EEL} = V_{EER}$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Range	Unit
Power Supply Voltage (1)	V _{DD}	_	2.7 to 5.5	V
Bourse Cupply Voltage (0)	V V *1	No load	14 to 28	V
Power Supply Voltage (2)	V _{DD} ~ V _{EE} *1	During LCD drive	18 to 28	V
Operating Temperature	Тор	_	−20 to +75	°C

*1
$$V_1 > V_2 > V_5 > V_{EE}$$
, $V_{DD} \ge V_1 > V_2 \ge V_{DD} - 7V$, $V_{EE} + 7V \ge V_5 > V_{EE}$
 $V_1 = V_{1L} = V_{1R}$, $V_2 = V_{2L} = V_{2R}$, $V_5 = V_{5L} = V_{5R}$, $V_{EE} = V_{EEL} = V_{EER}$

ELECTRICAL CHARACTERISTICS

DC Characteristics

 $(V_{DD} = 2.7 \text{ to } 5.5 \text{V}. \text{ Ta} = -20 \text{ to } +75 ^{\circ}\text{C})$

Parameter	Symbo	Condition		Min.	Тур.	Max.	Unit
"H" Input Voltage	V _{IH} *1	_		0.8V _{DD}		V _{DD}	V
"L" Input Voltage	V _{IL} *1			V _{SS}		0.2V _{DD}	V
"H Input Current	hin *1	$V_1 = V_{DD}$, $V_{DD} = 5.5V$		i —		1	μА
"L" Input Current	IIL *1	$V_1 = 0V, V_{DO} = 5.5V$			_	-1	μΑ
'H" Output Voltage	V _{OH} *2	$I_0 = -0.2$ mA, $V_{DD} = 2.7$ V		V _{DD} - 0.4	_	_	٧
"L" Output Voltage	V _{OL} *2	$I_0 = 0.2 \text{mA}, V_{DD} = 2.7 \text{V}$		_		0.4	٧
ON Resistance	R _{ON} *4	$V_{DD} - V_{EE} = 25V$, $ V_N - V_O = 0.25V$	*3	_	-	2	kΩ
D	Iss	f _{CP} = 28kHz, V _{DD} = 3.0V			_	50	
Current Consumption	1 _{EE}	V _{DD} - V _{EE} = 25V, No load			_	300	μА
Input Capacitance	Cı	f = 1MHz			5	_	ρF

- *1 Applicable to CP, IO₁, IO₅₍₎, IO_{1(X)}, SHL, DF, DISP OFF, MODE1, MODE2.
- *2 Applicable to IO₁, IO₅₀, IO₅₁, IO₁₀₀
- *3 $V_N = V_{DD}$ to V_{EE} , $V_2 = 1/16$ ($V_{DD} V_{EE}$), $V_5 = 15/16$ ($V_{DD} V_{EE}$), $V_{DD} = V1$, $V_{DD} = 4.5V$
- *4 Applicable to O_1 to O_{100}

Switching Characteristics

 $(V_{DD} = 2.7 \text{ to } 5.5 \text{V}. \text{ Ta} = -20 \text{ to } +75 ^{\circ}\text{C}. \text{ C}_{L} = 15 \text{pF})$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
"H", "L" Propagation Delay Time	tplH, tpHL	_	T		3	μS
Clock Frequency	f _{CP}		T		1	MHz
CP Pulse Width	twcp		63	_	_	ns
Data Setup Time	t _{SETUP}	_	100	_		ns
Data Hold Time	tHOLD		100		<u> </u>	ns
Rise / Fall Time of CP	tr (CP). tr (CP)		T —		20	ns

FUNCTIONAL DESCRIPTION

Pin Functional Description

• IO, IO₅₀, IO₅₁, IO₁₀₀

These are I/O pins of the two 50-bit bi-directional shift registers.

• SHL

This is an input pin for selection of the shift direction of the two 50-bit bi-directional shift registers.

• MODE1, MODE2

These are input pins for selection of whether this shift register serves as a two 50-bit application or a 40-bit and 50-bit application.

Functions of SHL, MODE1 and MODE2 pins are shown as below.

SHL	MODE1	MODE2	Scan	Data	Data	Function
<u> </u>	WODE	IVIODEL	direction	input pin	output pin	T directori
L		Ł	$O_1 \rightarrow O_{50}$	101	1050	The scan data input into the IO ₁ , and IO ₅₁ pins are shifted by trailing CP and are output from the IO ₅₀ and
		_	$0_{51} \rightarrow 0_{100}$	1051	10100	IO ₁₀₀ pins after the lapse of 50 clock pulses.
Н	1		$0_{50} \rightarrow 0_1$	1050	101	The scan data input into the IO ₁₀₀ and IO ₅₀ pins are shifted by trailing CP and are output from the IO ₅₁ and
			$O_{100} \rightarrow O_{51}$	10100	JO ₅₁	10 ₁ pins after the lapse of 50 clock pulses.
L		H	O ₁₁ → O ₅₀	101	1050	This condition means a mode of bypassing between the O_1 and O_{10} pins. The scan data input into the IO_1 pin is stored in the O_{11} pin and is output from the IO_{50} pin
_		, "	$0_{51} \rightarrow 0_{100}$	1051	IO ₁₀₀	after the lapse of 40 clock pulses. The operation in the O_{51} to O_{100} pins is the same as that in setting SHL to L and MODE2 to L.
Н	Н	_	$0_{50} \rightarrow 0_1$	1050	101	This condition means a mode of bypassing between the O_{91} and O_{100} pins. The scan data input into the IO_{100} pin is stored in O_{90} and is
''	"		$O_{90} \rightarrow O_{51}$	10100	1051	output from the 10_{51} pin after the lapse of 40 clock pulses. The operation in the 0_1 to 0_{50} pins is the same as that in setting SHL to H and MODE1 to L.

• CP

This is a clock pulse input pin of the two 50-bit bi-directional shift registers. Scan data is shifted at the trailing edgeof a clock pulse.

• DF

This is an input pin for a LCD drive waveform AC synchronization signal, which generally inputs a frame inversion signal. See the truth table.

• DISP OFF

This is an input pin to control the output pins O_1 to $O_{1(0)}$. Signals on the V_1 level are output from the output pins O_1 to $O_{1(0)}$, independent of the shift register data during low signal input.

• O₁ to O₁₀₀

These are 4-level driver output pins on this IC chip, directly corresponding to each bit shift register. DF signals combined to shift register data select and output any of four levels V_1 , V_2 , V_5 , and $V_{\rm FE}$.

• V_{DD}, V_{SS}

These are power pins of this IC. The V_{DD} pin is generally set to 2.7 to 5.5 V. V_{SS} is a grounding pin, which is generally set to 0 V.

• V_{1L}, V_{2L}, V_{5L}, V_{EEL}, V_{1R}, V_{1R}, V_{5R}, V_{EER}

These are LCD drive bias voltage pins. The V_1 pin may be separated from the V_{DD} pin. Bias supply voltages are supplied from an external unit.

Truth Table

DF	Shift register data	DISP OFF	Driver Out (O1 to O100)
L	L	н	V ₂
L	Н	Н	V _{EE}
Н	L	Н	V ₅
Н	Н	Н	V ₁
×	×	L	V ₁

x: Don't care

NOTES ON USE

Take note when turning power on and off.

The LCD drive on this IC chip requires a high voltage. When a high voltage is applied to it with the logic power supply floated, an overcurrent flows. This may damage the IC chip. Be sure to carry out the following power-on and power-off sequences.

When turning power on:

First turn on the logic circuits, then the LCD drivers, or turn on both of them at the same time. When turning power off:

First turn off the LCD drivers, then the logic circuits, or turn off both of them at the same time.

APPLICATION CIRCUITS

Example of connecting to LCD panel

In case of 400 (200 \times 2) lines

In case of 480 (240 \times 2) lines

