
®

CWDSP1650
DSP Core

Order Number C14049

Technical Manual
January 1998

Document DB14-000071-00, First Edition (January 1998)
This document describes revision A of LSI Logic Corporation’s CWDSP1650
DSP Core Technical Manual and will remain the official reference source for all
revisions/releases of this product until rescinded by an update.

To receive product literature, call us at 1.800.574.4286 (U.S. and Canada);
+32.11.300.531 (Europe); 408.433.7700 (outside U.S., Canada, and Europe)
and ask for Department JDS; or visit us at http://www.lsilogic.com.

LSI Logic Corporation reserves the right to make changes to any products herein
at any time without notice. LSI Logic does not assume any responsibility or
liability arising out of the application or use of any product described herein,
except as expressly agreed to in writing by LSI Logic; nor does the purchase or
use of a product from LSI Logic convey a license under any patent rights,
copyrights, trademark rights, or any other of the intellectual property rights of
LSI Logic or third parties.

Copyright © 1997, 1998 by LSI Logic Corporation. All rights reserved.

TRADEMARK ACKNOWLEDGMENT
LSI Logic logo design and CoreWare are registered trademarks and MiniRISC,
GigaBlaze, G10, and Right-First-Time are trademarks of LSI Logic Corporation.
PineDSPCore and OakDSPCore are registered trademarks of the DSP Group.
All other brand and product names may be trademarks of their respective
companies.
ii

Contents
Preface

Chapter 1 Introduction
1.1 Core Overview 1-1
1.2 Features Summary 1-3

1.2.1 General Architecture 1-3
1.2.2 Memory Organization 1-4
1.2.3 Physical Technology 1-4
1.2.4 Instruction Set Summary 1-4

1.3 CoreWare Program 1-6

Chapter 2 Functional Description
2.1 Overview 2-1

2.1.1 CWDSP1650 Core Components 2-2
2.1.2 CWDSP1650 External Modules 2-3
2.1.3 Pipeline Architecture 2-4

2.2 Buses 2-5
2.2.1 Data Buses 2-5
2.2.2 Address Buses 2-5

2.3 Program Control Unit (PCU) 2-6
2.3.1 Interrupt Handling in the PCU 2-8

2.4 Computation and Bit-Manipulation Unit (CBU) 2-8
2.4.1 Computation Unit 2-8
2.4.2 Bit-Manipulation Unit (BMU) 2-12
2.4.3 Saturation Unit 2-15

2.5 Data Address Arithmetic Unit (DAAU) 2-17
2.5.1 DAAU Registers 2-18
2.5.2 Addressing Modes 2-19

2.6 Interrupt Control Unit (ICU) 2-23
Contents iii

Chapter 3 Data Formats, Memory and Addressing
3.1 Data Formats 3-1
3.2 Program Memory 3-4

3.2.1 Program Memory Addressing Modes 3-5
3.3 Data Memory 3-5

3.3.1 Data Memory Addressing Modes 3-6

Chapter 4 Registers
4.1 CBU Registers 4-2

4.1.1 Ax and Bx Accumulators 4-2
4.1.2 X, Y, and P Registers 4-6
4.1.3 Interrupt Context Switching Registers 4-7
4.1.4 Shift Value Register 4-9

4.2 DAAU Registers 4-9
4.2.1 Address Registers (R0-R5) 4-10
4.2.2 Configuration Registers 4-11
4.2.3 Base Register (RB) 4-11
4.2.4 Stack Pointer Register (SP) 4-12
4.2.5 Alternative Bank Registers 4-12
4.2.6 Minimum/Maximum Pointer Latching Register

(MIXP) 4-13
4.3 PCU Registers 4-13

4.3.1 Data Value Match Register 4-14
4.3.2 Internal Configuration Register (ICR) 4-14
4.3.3 Program and Loop Counters 4-15

4.4 Status Registers 4-16
4.4.1 Status Register 0 (ST0) 4-16
4.4.2 Status Register 1 (ST1) 4-18
4.4.3 Status Register 2 (ST2) 4-19

4.5 User-Defined Registers 4-21

Chapter 5 Signals
5.1 Logic Symbol 5-1
5.2 Bus Interface 5-3
5.3 Program Control Interface 5-3
5.4 Off-Core Data Memory Interface 5-4
iv Contents

5.5 User-Defined Register Interface 5-6
5.6 Emulation and Trace Buffer Interface 5-7
5.7 Processor Control Interface 5-9
5.8 ScanICE Control Interface 5-10
5.9 Clock Control Interface 5-11

Chapter 6 Operation
6.1 Reset 6-1
6.2 Boot Procedure 6-2
6.3 Interrupts 6-3

6.3.1 Maskable Interrupts 6-4
6.3.2 Nonmaskable Interrupt (NMI) 6-6
6.3.3 TRAP/BI Interrupts 6-6
6.3.4 Interrupt Protocol 6-7
6.3.5 Interrupt Priority 6-9
6.3.6 Context Switching 6-9
6.3.7 Interrupt Nesting 6-10
6.3.8 Interruptible State 6-11

6.4 Memory Interface 6-12
6.4.1 Memory Interface with Slow Memory Devices 6-14

6.5 User-Defined Register Interface 6-15
6.6 Program Protection Mechanism 6-16
6.7 Clock Control Unit (CCU) 6-17

6.7.1 CCU Operation 6-18
6.7.2 CCU Register 6-19

Chapter 7 Instruction Set
7.1 Notations 7-1

7.1.1 Register Notations 7-1
7.1.2 Number Representation 7-3
7.1.3 Data and Program Operands 7-3
7.1.4 Option Fields 7-5
7.1.5 Condition Field (cond) Notations 7-5
7.1.6 Flag Notations 7-6
7.1.7 Miscellaneous Notations 7-6

7.2 Conventions and General Information 7-7
7.3 Instruction Functional Groups 7-10
Contents v

7.3.1 Shift Operations 7-14
7.3.2 Move and Shift Operations 7-15
7.3.3 Rounding Operations 7-16
7.3.4 Division Step Operations 7-16
7.3.5 Logical Operations 7-16
7.3.6 MAX and MIN Instructions 7-16
7.3.7 Multiplication Instructions 7-17

7.4 Instruction Set List 7-17
7.5 Instruction Opcode Bit Coding 7-203

Chapter 8 On-Chip Emulation Module (OCEM)
8.1 OCEM Overview 8-1

8.1.1 Breakpoint Generation 8-1
8.1.2 Program Flow Tracing 8-2
8.1.3 ScanICE Debug Support 8-2
8.1.4 Suspended Mode Operation 8-3

8.2 OCEM Programming Model 8-3
8.2.1 Status 0 Register 8-4
8.2.2 Status 1 Register 8-6
8.2.3 Mode Register 8-7
8.2.4 Data Address Breakpoint Register 8-9
8.2.5 Data Address Mask Register 8-9
8.2.6 Program Address Breakpoint Counters 8-10
8.2.7 Program Address Breakpoint Registers 8-10
8.2.8 Program Flow Trace Register and Program

Flow Trace Buffer 8-10
8.3 OCEM Signals 8-14

8.3.1 Service Interface 8-16
8.3.2 Boot Logic Interface 8-17
8.3.3 Core Memory Bus Interface 8-18
8.3.4 User-Defined Register Interface 8-19
8.3.5 Illegal Access Interface 8-19
8.3.6 Core Control Interface 8-20
8.3.7 Breakpoint Interface 8-21
8.3.8 ScanICE Interface 8-22
8.3.9 Clocking and Miscellaneous OCEM Signals 8-23

8.4 OCEM Breakpoints 8-24
8.4.1 Program Address Breakpoint 8-24
vi Contents

8.4.2 Data Address Breakpoint 8-26
8.4.3 Data Value Breakpoint 8-26
8.4.4 Combined Data Address and Data Value

Breakpoints 8-27
8.4.5 External Register Breakpoint 8-27
8.4.6 Abort Breakpoint 8-27
8.4.7 Illegal Access Breakpoint 8-28
8.4.8 Branch and Block Repeat Breakpoints 8-28
8.4.9 Interrupt Breakpoint 8-29
8.4.10 Single-Step Operation 8-29
8.4.11 Program Flow Trace Buffer Full Breakpoint 8-29

Chapter 9 ScanICE
9.1 ScanICE Power Saving Registers 9-2
9.2 ScanICE Requirements 9-4
9.3 ScanICE Interface 9-6

9.3.1 Scan Control Register 9-7
9.3.2 ScanICE Control 9-9
9.3.3 External Scan Logic Control 9-11
9.3.4 Clock Gating 9-12

9.4 CWDSP1650 ScanICE Support 9-12
9.4.1 OCEM ScanICE Support 9-12
9.4.2 CCU ScanICE Support 9-12

9.5 Memory Access during ScanICE 9-13
9.6 ScanICE Reset 9-15

Chapter 10 Specifications
10.1 Physical Specifications 10-1
10.2 AC Timing Diagrams 10-1

10.2.1 OCEM Registers 10-2
10.2.2 Data and Program Memory 10-4
10.2.3 User-Defined Registers 10-9

Appendix A CWDSP1650 Register Summary

Customer Feedback
Contents vii

Figures
1.1 CWDSP1650 Block Diagram 1-2
2.1 CWDSP1650 Block Diagram 2-2
2.2 CWDSP1650 Instruction Pipeline 2-4
2.3 Program Control Unit Diagram 2-6
2.4 CU Block Diagram 2-9
2.5 BMU Block Diagram 2-13
2.6 Data Address Arithmetic Unit (DAAU) 2-17
2.7 Interrupt Control Unit 2-23
3.1 Signed and Unsigned Integer Formats 3-2
3.2 Program Memory Map 3-4
4.1 CWDSP1650 Registers 4-1
4.2 P Register 4-7
4.3 ST0 and Shadow Registers 4-8
4.4 ST1 and Shadow Registers 4-8
4.5 ST2 and Shadow Registers 4-9
4.6 CFGI Configuration Register 4-11
4.7 CFGJ Configuration Register 4-11
4.8 Internal Configuration Register (ICR) 4-14
4.9 Status Register 0 (ST0) 4-16
4.10 Status Register 1 (ST1) 4-18
4.11 Status Register 2 (ST2) 4-19
5.1 CWDSP1650 Logic Symbol 5-2
6.1 Reset Operation 6-2
6.2 Entering Boot Mode 6-3
6.3 Interrupt Protocol 6-7
6.4 Memory Protection Mechanism 6-17
6.5 CCU Register 6-19
7.1 Arithmetic Shift Right 7-15
7.2 Logical Shift Right 7-15
7.3 Arithmetic and Logical Shift Left 7-15
8.1 Status 0 Register 8-4
8.2 Status 1 Register 8-6
8.3 Mode Register 8-7
8.4 Program Flow Trace with Corresponding Trace

Buffer Entries 8-13
9.1 Power Saving Register with Scan Inserted 9-2
viii Contents

9.2 ScanICE Support in a CWDSP1650 System 9-5
9.3 Example Scan Interface 9-7
9.4 Scan Control Register 9-8
9.5 Entry to Scan Using a Breakpoint Interrupt 9-10
9.6 Stop Scan Mode 9-11
9.7 Example ScanICE Memory Access Scheme 9-14
10.1 Writing the OCEM 10-2
10.2 Reading the OCEM 10-3
10.3 Data Memory Write Access 10-4
10.4 Data Memory Read Access 10-5
10.5 Program Memory Write Access 10-5
10.6 Program Memory Read Access 10-6
10.7 Memory Access with Wait State 10-7
10.8 User-Defined Register Access 10-9

Tables
1.1 CWDSP1650 Instruction Set Summary 1-5
2.1 Multiplier Unit Instructions 2-11
2.2 Saturation Overflow 2-16
2.3 Indirect Addressing Mode Bits 2-20
3.1 Signed and Unsigned Integer Ranges 3-3
3.2 Data Memory Address Mapping 3-6
3.3 Short Direct Addressing Page Values 3-7
4.1 CBU Registers 4-2
4.2 Ax and Bx Accumulator Organization 4-3
4.3 Ax Accumulator Loading Values 4-4
4.4 Bx Accumulator Loading Values 4-5
4.5 DAAU Registers 4-10
4.6 Rn Register Grouping 4-10
4.7 Validity of STEP and MODULO in Different

Addressing Modes 4-11
4.8 Alternative Bank Registers 4-13
4.9 PCU Registers 4-13
4.10 Status Registers 4-16
6.1 Maskable Interrupt Bits and Signals 6-5
6.2 Interrupts and Priorities 6-9
6.3 Interrupt Latency after Specific Instructions 6-12
6.4 Data Memory Space Partitioning 6-13
Contents ix

6.5 Memory Signals Interface 6-14
6.6 Example for Defining the Number of Wait Cycles 6-15
6.7 User-Defined Register Coding 6-16
6.8 CCU Output Clocks 6-18
7.1 Register Notations 7-1
7.2 Program Operand Notation 7-3
7.3 Data Operand Notation 7-4
7.4 Option Field Notations 7-5
7.5 Condition Field Notations 7-5
7.6 Miscellaneous Notations 7-6
7.7 CWDSP1650 Instruction Set Listing 7-10
7.8 Opcode i 7-203
7.9 Opcode i or j 7-203
7.10 Opcode AB 7-203
7.11 Opcode ABL 7-204
7.12 Opcode rn 7-204
7.13 Opcode rn* 7-204
7.14 Opcode mod 7-205
7.15 Opcode w 7-205
7.16 Opcode REG/reg 7-205
7.17 Opcode ii 7-206
7.18 Opcode jj 7-206
7.19 Opcode qq 7-207
7.20 Opcode cond 7-207
7.21 Opcode x 7-207
7.22 Opcode bank in BANKE Instructions 7-208
7.23 Opcode ext 7-208
7.24 Opcode bbbb 7-208
8.1 OCEM Programming Model 8-3
8.2 OCEM Signal List 8-14
8.3 Program Address Breakpoint Components 8-25
9.1 ScanICE Operational Modes 9-3
9.2 Six-pin ScanICE Interface 9-6
10.1 CWDSP1650 Physical Layout Size 10-1
10.2 OCEM Access Timing Constraints 10-3
10.3 Memory Interface Timing Constraints 10-7
10.4 User-Defined Register Interface Timing Values 10-10
A.1 CWDSP1650 Registers A-1
x Contents

Preface
This book is the primary reference and technical manual for LSI Logic’s
CWDSP1650 DSP Core. It contains a complete functional description for
the core and includes both physical and electrical specifications.

Audience

This document assumes that the reader has some familiarity with digital
signal processors. The people who benefit the most from this book are:

♦ Engineers and managers who are evaluating the CWDSP1650 for
possible use in a design

♦ Engineers who are designing the CWDSP1650 into a chip

Engineers who are familiar with the CWDSP1640 can refer to the
Comparison of the CWDSP1640 and CWDSP1650 Cores Technical Note
for a full review of any design changes.

Organization

This document has the following chapters and appendixes:

♦ Chapter 1, Introduction , discusses the CWDSP1650 in general,
provides the core’s key features, and discusses the CoreWare®

program.

♦ Chapter 2, Functional Description , describes the purpose of each
component block in the CWDSP1650.

♦ Chapter 3, Data Formats, Memory and Addressing , describes the
six supported data formats, the program and data memory spaces,
and the addressing modes.
Preface xi

♦ Chapter 4, Registers , defines the CWDSP1650 registers and
describes the register bit fields.

♦ Chapter 5, Signals , describes the input, output, and bidirectional
signals of the CWDSP1650 core.

♦ Chapter 6, Operation , describes the operation of the CWDSP1650
input/output interface.

♦ Chapter 7, Instruction Set , provides a detailed description of the
CWDSP1650 instruction set.

♦ Chapter 8, On-Chip Emulation Module (OCEM) , describes the
optional module that provides on-chip emulation for a
CWDSP1650-based chip.

♦ Chapter 9, ScanICE , describes the CWDSP1650 ScanICE
components and describes an example ScanICE system design.

♦ Chapter 10, Specifications , contains the physical characteristics
and AC timing for the CWDSP1650 core.

♦ Appendix A, CWDSP1650 Register Summary , lists all of the
CWDSP1650 registers and where a detailed description for each can
be found.

♦ Customer Feedback , includes a form that you may use to fax us
your comments about this document.

Related Publications

CWDSP1640 OakDSPCore® Assembler and Linker User’s Guide,
Order No. C14029

CWDSP1640 OakDSPCore® C Cross Compiler User’s Guide,
Order No. C14026.A

CWDSP1640 OakDSPCore® Debugger User’s Guide,
Order No. C14027.A

CWDSP1650 Reference Device User’s Guide, available from LSI Logic.

CWDSP1650 Evaluation Kit User’s Guide, Order No. C14046

Comparison of the CWDSP1640 and CWDSP1650 Cores Technical
Note, Order No. C15030
xii Preface

Conventions Used in This Manual

The first time a word or phrase is defined in this manual, it is italicized.

The word assert means to drive a signal true or active. The word
deassert means to drive a signal false or inactive.

Hexadecimal numbers are indicated by the prefix “0x”, for example,
0x32CF. Binary numbers are indicated by the prefix “0b”, for example,
0b0011 0010 1100 1111.
Preface xiii

xiv Preface

Chapter 1
Introduction
This chapter overviews LSI Logic’s CWDSP1650 DSP core and contains
the following sections:

♦ Section 1.1, “Core Overview”

♦ Section 1.2, “Features Summary”

♦ Section 1.3, “CoreWare Program”

1.1 Core Overview

The CWDSP1650 is a 16-bit, fixed-point digital signal processor (DSP)
core designed for middle-end to high-end telecommunications and
consumer applications. This core provides a low-cost, high-performance
solution for applications where low-power and portability are a necessity.
This core is a component of the LSI Logic CoreWare Library, which
contains cores for control, high-speed communication, and mixed-signal
functions to complement quick time-to-market, customizable solutions.
The CWDSP1650 is designed by LSI Logic to be fully compatible with
the DSP Group OakDSPCore® Instruction Set architecture. The Oak
family of cores are modified Harvard architectures, based on DSP
Group’s PineDSPCore® architecture.

The CWDSP1650 architecture contains dedicated buses, program
memories, and data memories. The core is composed of three major
components:

♦ Data Address Arithmetic Unit (DAAU)

♦ Program Control Unit (PCU)

♦ Computation and Bit Manipulation Unit (CBU)
1-1

The CBU includes a Multiplier, an Arithmetic Logical Unit (ALU), and the
Bit Manipulation Unit (BMU). A multiply-accumulate unit performs single-
cycle operations.

Figure 1.1 shows a block diagram of the CWDSP1650 core, with
modules external to the core shown as shaded regions. Any of the
external modules are available as hardmacros from LSI Logic and do not
need to be generated by the designer.

Figure 1.1 CWDSP1650 Block Diagram

The CWDSP1650 instruction set allows for straight-forward generation of
efficient and compact code for implementation of the DSP functions
within a system. Designers may also integrate multiple OakDSPCores
onto a single piece of silicon along with other ASIC functions, processors
such as the ARM7TDMI core, and application specific logic to build a
system-on-a-chip. With many instructions available, the CWDSP1650
can also act as a system controller in its own right.

Interrupts
ICU

PCU

CCU

PRAMXRAM

YRAM

DAAU

MIU

YDB

XDB

IAB

IDB

Clocks
BMU

Barrel Shifter

BFO

B0
B1

CBU

CU
Multiplier

ALU

Wait

EDB

CWDSP1650 Core

A0
A1

External
Registers

Interrupt
Acknowledges
1-2 Introduction

The CWDSP1650 is supported by a full suite of development tools.
Support tools for source code and system-level development include:

♦ Assembler/Linker

♦ Optimizing C compiler

♦ Simulator

♦ On-Core Emulation Module (OCEM)

♦ Evaluation board

VHDL or Verilog models implement the top-down design methodology.

1.2 Features Summary

This section summarizes the features of the CWDSP1650.

1.2.1 General Architecture

These features describe general items regarding the hardware
architecture of the CWDSP1650:

♦ Modified Harvard Architecture

♦ Single-cycle multiply/accumulate instructions

♦ 36-bit Arithmetic Logical Unit (ALU) and barrel shifter

♦ Four 36-bit accumulators

♦ Saturation mode on overflow

♦ Single-cycle exponent evaluation

♦ Double-precision multiplication support

♦ Bit field operations

♦ Four-level zero-overhead nested looping (interruptible)

♦ Repeat instruction (interruptible)

♦ Four user interrupts available (three maskable, one nonmaskable)

♦ In-circuit debugging support, with on-chip emulator (OCEM)

♦ Automatic context switching with shadow registers

♦ Software stack support
Features Summary 1-3

♦ Six 16-bit data pointers for X-data memory and Y-data memory with
three additional alternative registers

♦ Support for direct, indirect, index, and modulo addressing modes

♦ Off-core X-memory and Y-memory facilitating modular design

♦ Automatic boot procedure support (self and host booting)

1.2.2 Memory Organization

These features describe the memory support of the CWDSP1650.

♦ 64 Kword addressable data space

♦ 64 Kword addressable program memory space

♦ Off-core data memory: up to 64 Kwords for X-memory, and up to
32 Kwords for Y-memory

1.2.3 Physical Technology

These features summarize the physical attributes and technology of the
CWDSP1650 DSP core:

♦ 0.35-micron G10™ technology

♦ Fully static design

♦ 3.3 V ±10% operation

♦ Core Power - 2.0 mW/MHz

♦ Core Size - 5.0 mm2

1.2.4 Instruction Set Summary

Table 1.1 summarizes the instruction set for the core. All instructions are
16 bits long, and most execute in a single cycle. Several instructions
including ADDV, SUBV, CMPV, and PUSH can optionally have a long
immediate operand (due to the long immediate operand, these
instructions are executed in two cycles.)
1-4 Introduction

Table 1.1 CWDSP1650 Instruction Set Summary

Op Description Op Description

Arithmetic and Logical Instructions BMU Instructions

ADD Add SET Set Bit-field

SUB Subtract RST Reset Bit-field

OR Logical OR CHNG Change Bit-field

AND Logical AND TST0 Test Bit-Field for Zeros

XOR Logical Exclusive OR TST1 Test Bit-Field for Ones

CMP Compare TSTB Test Specific Bit

ADDL Add to Low Accumulator SHFC Shift Accumulators According to Shift Value
Register ConditionallySUBL Subtract from Low Accumulator

ADDH Add to High Accumulator SHFI Shift Accumulators by an Immediate Shift Value

SUBH Subtract from High Accumulator EXP Evaluate the Exponent Value

CMPU Compare Unsigned MODB Modify Bx-Accumulator Conditionally

ADDV Add Long Immediate Value1 MODB Modifications:

SUBV Subtract Long Immediate Value1 SHR Shift Right

CMPV Compare Long Immediate Value1 SHR4 Shift Right Four

NORM Normalize SHL Shift Left

DIVS Division Step SHL4 Shift Left Four

MAX Maximum between Two Ax-Accumulators ROR Rotate Right through Carry

MAXD Maximum between Data Memory Location
and Ax-Accumulator

ROL Rotate Left through Carry

CLR Clear

MIN Minimum between Two Ax-Accumulators Move Instructions

LIM Limit Ax-Accumulator MOV Move Data

MODA Modify Ax-Accumulator Conditionally MOVP Move from Program Memory into Data Memory

MODA Modifications: MOVD Move from Data Memory into Program Memory

SHR Shift Right MOVS Move and Shift according to Shift Value Register

SHR4 Shift Right Four MOVSI Move and Shift according to an Immediate Shift Value

SHL Shift Left MOVR Move and Round

SHL4 Shift Left Four PUSH Push Register or Long Immediate Value onto Stack

ROR Rotate Right through Carry POP Pop from Software Stack into Register

ROL Rotate Left through Carry SWAP Swap Ax and Bx Accumulator

NOT Logical Not BANKE Bank Exchange

NEG Two's Complement Control and Miscellaneous Instructions

CLR Clear NOP No Operation

COPY Copy other Accumulator MODR Modify Register N

RND Round upper 20 bits EINT Enable Interrupt

PACR Product Move and Round DINT Disable Interrupt

CLRR Clear and Round TRAP Software Interrupt

INC Increment by One LOAD Load Specific Field into Registers - page, modX, stepX, ps

DEC Decrement by One CNTX Context Switching Store or Restore
Features Summary 1-5

The CWDSP1650 supports DSP-specific instructions such as multiply
and accumulate, multiply and subtract, nested block repeat (looping),
modulo and index operations on data addresses, bit manipulation
operations, and control specific operations.

See Chapter 7, “Instruction Set,” for a more detailed description of the core
instruction set and an alphabetical listing of all CWDSP1650 instructions.

1.3 CoreWare Program

An LSI Logic core is a fully defined, optimized, and reusable block of
logic. It supports industry-standard functions and has predefined timing
and layout. The core is also an encrypted RTL simulation model for a
wide range of VHDL and Verilog simulators.

The CoreWare library contains an extensive set of complex cores for the
communications, consumer, and computer markets. The library consists
of high-speed interconnect functions such as the GigaBlaze™ G10 core,
MIPS embedded microprocessors, MPEG-2 decoders, a PCI core, and
many more.

The library also includes megafunctions or building blocks, which provide
useful functions for developing a system on a chip. Through the

Multiply Instructions Branch/Call Instructions

MPY Multiply BR Conditional Branch

MPYSU Multiply Signed by Unsigned BRR Relative Conditional Branch

MAC Multiply and Accumulate Previous Product CALL Conditional Call Subroutine

MACSU Multiply Signed by Unsigned and Accumulate2 CALLR Relative Conditional Call Subroutine

MACUS Multiply Unsigned by Signed and Accumulate2 CALLA Call Subroutine at Location Specified by Ax-Accumulator

MACUU Multiply Unsigned by Unsigned and Accumulate2 RET Return Conditionally

MAA Multiply and Accumulate Aligned Previous
Product

RETD Delayed Return

RETI Return from Interrupt Conditionally

MAASU Multiply Signed by Unsigned and Accumulate
Aligned2

RETID Delayed Return from Interrupt

RETS Return with Short Immediate Parameter

MSU Multiply and Subtract Previous Product Loop Instructions

MPYI Multiply Signed Short Immediate REP Repeat Next Instruction

SQR Square BKREP Block Repeat

SQRA Square and Accumulate Previous Product BREAK Break from a Block-Repeat

1. To or from a Register or a Data Memory Location.
2. Previous Product.

Table 1.1 CWDSP1650 Instruction Set Summary (Cont.)

Op Description Op Description
1-6 Introduction

CoreWare program, you can create a system on a chip uniquely suited
to your applications.

Each core has an associated set of deliverables, including:

♦ RTL simulation models for both Verilog and VHDL environments

♦ A System Verification Environment (SVE) for RTL-based simulation

♦ Netlists for full timing simulation

♦ Complete documentation

♦ LSI Logic ToolKit support

LSI Logic's ToolKit provides seamless connectivity between products
from leading electronic design automation (EDA) vendors and LSI Logic's
manufacturing environment. Standard interfaces for formats and
languages such as VHDL, Verilog, Waveform Generation Language
(WGL), Physical Design Exchange Format (PDEF), and Standard Delay
Format (SDF) allow a wide range of tools to interoperate within the LSI
Logic ToolKit environment. In addition to design capabilities, full scan
Automatic Test Pattern Generation (ATPG) tools and LSI Logic's
specialized test solutions can be combined to provide high-fault coverage
test programs that assure a fully functional design.

Because your design requirements are unique, LSI Logic is flexible in
working with you to develop your system-on-a-chip CoreWare design.
Three different work relationships are available:

♦ You provide LSI Logic with a detailed specification and LSI Logic
performs all design work.

♦ You design some functions while LSI Logic provides you with the
cores and megafunctions, and LSI Logic completes the integration.

♦ You perform the entire design and integration, and LSI Logic
provides the core and associated deliverables.

Whatever the work relationship, LSI Logic's advanced CoreWare
methodology and ASIC process technologies consistently produce
Right-First-Time™ silicon.
CoreWare Program 1-7

1-8 Introduction

Chapter 2
Functional Description
This chapter describes the components and functional blocks of the
CWDSP1650 DSP core. This chapter is divided into the following
sections:

♦ Section 2.1, “Overview”

♦ Section 2.2, “Buses”

♦ Section 2.3, “Program Control Unit (PCU)”

♦ Section 2.4, “Computation and Bit-Manipulation Unit (CBU)”

♦ Section 2.5, “Data Address Arithmetic Unit (DAAU)”

♦ Section 2.6, “Interrupt Control Unit (ICU)”

2.1 Overview

This section overviews all of the major CWDSP1650 components and
the processor pipeline architecture. Figure 2.1 contains a block diagram
of the CWDSP1650 architecture. (Please note that the shaded areas are
components external to the core.) This section is further divided into the
following subsections:

♦ Section 2.1.1, “CWDSP1650 Core Components”

♦ Section 2.1.2, “CWDSP1650 External Modules”

♦ Section 2.1.3, “Pipeline Architecture”
2-1

Figure 2.1 CWDSP1650 Block Diagram

2.1.1 CWDSP1650 Core Components

The CWDSP1650 core is composed of the following major elements:

♦ CWDSP1650 Busses

♦ Program Control Unit (PCU)

♦ Computational and Bit Manipulation Unit (CBU)

♦ Data Addressing Arithmetic Unit (DAAU)

♦ Memory Interface Unit (MIU)

♦ Interrupt Control Unit (ICU)

All CWDSP1650 busses (data and address) are unidirectional and carry
data to and from the core. See Section 2.2, “Buses,” for more detailed
information.

The Program Control Unit (PCU) controls the sequencing of the core
program: it fetches instructions, generates program memory addresses,
handles interrupts with the ICU, and sequences branches, calls, and
instruction repeats. The PCU generates the control for the rest of the

Interrupts
ICU

PCU

CCU

PRAMXRAM

YRAM

DAAU

MIU

YDB

XDB

IAB

IDB

Clocks
BMU

Barrel Shifter

BFO

B0
B1

CBU

CU
Multiplier

ALU

Wait

EDB

CWDSP1650 Core

A0
A1

External
Registers

Interrupt
Acknowledges
2-2 Functional Description

CWDSP1650 core. See Section 2.3, “Program Control Unit (PCU),” for
more detailed information.

The Computational and Bit Manipulation Unit (CBU) is composed of
two units: the Bit Manipulation Unit (BMU) and the Computation Unit
(CU). The CU contains the multiplier, Arithmetic Logic Unit (ALU), and
Ax Accumulators. The BMU contains a Barrel Shifter, the Bit-Field
Operations Unit (BFO), and the Bx Accumulators. The CBU also includes
a Saturation Unit and bus alignment/sign-extension logic available for
both the BMU and CU. See Section 2.4, “Computation and Bit-
Manipulation Unit (CBU),” for more detailed information.

The Data Addressing Arithmetic Unit (DAAU) contains the general
purpose registers, stack pointer, and index register. It also contains two
identical arithmetic units to generate sequences of addresses using the
DAAU registers. Two addresses may be generated on each cycle for
simultaneous access of both X-memory and Y-memory spaces. See
Section 2.5, “Data Address Arithmetic Unit (DAAU),” for more detailed
information.

The Memory Interface Unit (MIU) routes data memory addresses to the
X- and Y-address buses and X-data and Y-data from the data memory.
The CWDSP1650 user cannot control the MIU operations, therefore, the
MIU is not fully described in this chapter.

The Interrupt Control Unit (ICU) handles the interrupt protocols for
each of the five interrupts and generates a separate acknowledge signal
for each one. The ICU generates the interrupt vector and status signal
for the PCU and also prioritizes incoming interrupts. See Section 2.6,
“Interrupt Control Unit (ICU),” for more detailed information.

2.1.2 CWDSP1650 External Modules

Besides these internal core components, a CWDSP1650 design may
require the following logic blocks external to the core (shaded units in
Figure 2.1):

♦ Data memory (XRAM and YRAM)

♦ Program memory (PRAM)

♦ External (User Defined) registers

♦ Clock Control Unit (CCU)
Overview 2-3

♦ On-Chip Emulation Module (OCEM)

♦ Bus Interface Unit (BIU)

2.1.3 Pipeline Architecture

The CWDSP1650 implements a four-stage pipeline architecture. The
Pipeline architecture is designed with a central microcode control that
allows easier and better control of the core. Figure 2.2 shows the
CWDSP1650 pipeline operation.

Figure 2.2 CWDSP1650 Instruction Pipeline

The execution of a single CWDSP1650 instruction consists of the
following stages:

1. IF (Instruction Fetch) - The PCU generates a new program address,
fetches the instruction, and stores it in the instruction register.

2. ID (Instruction Decode) - The core decodes the instruction into a
wide microinstruction that contains almost all the control signals for
the CWDSP1650 processor. During the ID stage, the core decides
the program flow and, at the end of the cycle, registers the
microinstruction.

3. OF (Operand Fetch and Execute) - During the OF cycle, the core
generates the operand addresses and fetches the source operands
from either an internal source or from memory. The core also sets
up the ALU and other execution units and stores the result in the
proper destination. Finally, the condition flags are updated at the end
of the cycle.

4. EX (Execute) - This cycle is required only for multiplies and a few
other instructions. The multiplier operates on the X and Y registers,
storing the result in the Product register. This result is available
during the next OF stage.

IDIF OF EX
2-4 Functional Description

2.2 Buses

This section covers the different address and data buses that comprise
the CWDSP1650. For this section, the CWDSP1650 buses have been
divided into two types: data buses and address buses.

2.2.1 Data Buses

The core transfers data on the following unidirectional 16-bit buses:

♦ External Main Data Bus Out (EDB)

♦ Instruction Data Bus In (IDB)

♦ X-Memory Data Bus In (XDB)

♦ Y-Memory Data Bus In (YDB)

♦ External User Register Input Bus In (EXT_IN)

The External Data Bus delivers all of the data that passes from the core
to the external components (i.e. the XRAM, YRAM, PRAM, and External
Registers.) The unidirectional YDB bus carries all data transfers from the
Y-Memory to the core. Instruction word fetches take place in parallel over
the IDB. The unidirectional XDB bus carries all data transfers from the
X-Memory to the core.

Two 16-bit data words and one instruction word can be moved within one
instruction cycle.

2.2.2 Address Buses

The core drives addresses on the following unidirectional 16-bit buses:

♦ Instruction Address Bus (IAB)

♦ X-Memory Address Bus (XAB)

♦ Y-Memory Address Bus (YAB)

The unidirectional 16-bit X-Memory Address Bus (XAB) provides
addresses for the X-Memory. Similarly, the unidirectional 16-bit
Y-Memory Address Bus (YAB) provides the addresses for the Y-Memory.
The unidirectional 16-bit Instruction Address Bus (IAB) transfers the
program memory addresses to the program memory.
Buses 2-5

2.3 Program Control Unit (PCU)

The Program Control Unit (PCU) performs instruction fetch, instruction
decoding, interrupt handling, and hardware loop control. It provides
control signals for the rest of the CWDSP1650 core and the on-chip
emulation unit (OCEM). The PCU also provides signals to enable
program memory protection in the bus interface unit. Figure 2.3 is a block
diagram of the PCU and associated logic blocks.

Figure 2.3 Program Control Unit Diagram

The PCU contains:

♦ Instruction Register

♦ Instruction Decode Logic

♦ Program Counter Logic

♦ Repeat Unit

At the end of the IF cycle, the PCU loads the Instruction register with the
instruction to be decoded.

During the ID cycle, instruction decode logic converts the instruction into
a number of signals that control the rest of the CWDSP1650 processor.
Also during the ID cycle, the PCU initiates branch or vector operations,
depending on the conditions and interrupt states during the cycle.

Program Memory

Program Counter
Logic

Instruction
Register

Instruction
Decode
Logic

Repeat
Unit

ICU

Conditions

Interrupts
and

Acknowledges
Interface to Other Components

IAB IDB

PCU
2-6 Functional Description

The Program Counter Logic generates the addresses for the program
memory and stores the values in the program counter. There are many
sources for the program address:

♦ Current program counter, incremented

♦ Block repeat start address

♦ Immediate value (from Instruction Register)

♦ Current program counter plus short immediate value

♦ Interrupt vector

♦ Special Holding Register for data access to program memory

The Repeat Unit controls any zero overhead looping operations, initiated
by the REP and BKREP instructions. The number of repetitions for a
repeat (REP) or block repeat (BKREP) can be defined as either an 8-bit
fixed value embedded in the instruction code, or as a 16-bit value
transferred from one of the processor registers. A REP instruction
repeats the following instruction and a BKREP repeats a block of
program code of at least two instructions in length. Block repeat loops
may be nested up to four levels and a block repeat may contain further
REP instructions. Both repeat and block repeat loops are interruptible.

During the operation of a repeat loop, the repeat unit register (REPC)
stores the current count of repetitions remaining. The REPC value can
be read using the instruction mov repc, ab . During the operation of a
block repeat loop, the last and first addresses of the loop are stored in
dedicated registers in the repeat unit.

The loop count is held in the program accessible loop counter (LC).
When a block repeat is nested, the start address register, end address
register, and LC register for the outer level are stored in the repeat unit,
and new values are set up for the new block repeat level. The LP bit in
the Internal Configuration Register (ICR) always sets when a block
repeat is in progress. Resetting the LP bit (with either the MOV or ICR
instruction) stops execution of all current levels of block repeat. The
BC[2:0] bits in the ICR indicate the current block repeat nesting level.

A BREAK instruction can stop each of the four nested levels of a block
repeat.
Program Control Unit (PCU) 2-7

2.3.1 Interrupt Handling in the PCU

When the ICU responds to an interrupt, it asserts the ISTAT signal and
sends the interrupt vector to the PCU. The asserted ISTAT signal causes
the ID cycle to insert an interrupt service pseudo-instruction into the
pipeline, so that the next instruction is prevented from being decoded.
Instead, the address of the next instruction in the program memory is
stored on the stack, and execution continues from the interrupt vector
location in the program memory. For more information about the ICU, see
Section 2.6, “Interrupt Control Unit (ICU).”

2.4 Computation and Bit-Manipulation Unit (CBU)

The Computation and Bit-Manipulation Unit (CBU) performs all the
arithmetic and logical operations within the Core. It contains two main
units: the Computation Unit (CU) and the Bit-Manipulation Unit (BMU).
The CBU also contains a saturation unit that is shared by both the CU
and the BMU units.

2.4.1 Computation Unit

The Computation Unit (CU) consists of three major parts:

♦ Two 36-bit accumulators (A0 and A1)

♦ Arithmetic Logic Unit (ALU)

♦ Multiplier Unit

The following subsections provide details about each of these three
functional blocks. Figure 2.4 shows a block diagram of the CBU with the
CU components shaded.
2-8 Functional Description

Figure 2.4 CU Block Diagram

2.4.1.1 Ax-Accumulators

Each Ax Accumulator is organized as two 16-bit registers (A0H and A0L,
A1H and A1L) with a four-bit extension (A0E and A1E). The Core
accesses the two portions of each accumulator as 16-bit data registers,
and uses them as either source or destination registers in all relevant
instructions. See Section 4.1, “CBU Registers,” for more detailed
information on the Ax Accumulators.

2.4.1.2 Arithmetic Logic Unit

The 36-bit Arithmetic Logic Unit (ALU) performs all arithmetic and logical
operations on data operands. It can perform positive or negative
accumulate, add, subtract, compare and several other operations in a
single cycle (operations involving immediate data take two cycles). The
ALU is a 36-bit, single cycle, nonpipelined unit that uses two’s
complement arithmetic.

The ALU receives one operand from one of the Ax Accumulators and
another operand from the output shifter of the multiplier, the XDB
(through bus alignment logic), or from the other Ax Accumulator. The

Bit Manipulation Unit (BMU)

Barrel Shifter

Bit-Field
Operations

Unit

B0-Accumulator

B1-Accumulator

Exponent Unit

SV Register

EDB

Saturation Unit

Arithmetic
Logical

Unit (ALU)

Multiplier

Computation Unit (CU)

A0-Accumulator

A1-Accumulator
Computation and Bit-Manipulation Unit (CBU) 2-9

source operands are 8, 16, or 36 bits wide and can be addressed using
direct or indirect indexed methods, as a register content or as pointed to
by the stack pointer. The source and destination Ax Accumulators of an
ALU instruction are always the same. For example, in the instruction
add r1, a0 the ALU adds register R1 to the A0 Accumulator, and stores
the result in the A0 Accumulator.

The ALU stores results in one of two ways:

1. In one of the Ax Accumulators

2. Transfers results to one of the registers or a data memory location

The ALU uses the second method for addition, subtraction, and compare
operations between a 16-bit immediate operand and either a data
memory location or one of the registers. This method takes two clock
cycles and does not affect the accumulators. The add and subtract
operations are read-modify-write instructions. For more information see
the ADDV, SUBV, and CMPV instructions in Chapter 7, “Instruction Set.”

Unless otherwise specified, in all operations between an 8-bit or 16-bit
operand and a 36-bit Ax Accumulator, the 16-bit operand is regarded as
the least-significant word of a 36-bit operand, with sign extension for
arithmetic operations and zero extension for logical operations.

The status flags in Status Register 0 and Status Register 1 are affected
as a result of the ALU output, the BFO, or the Barrel Shifter operation.
A MOV instruction also affects the flags when the entire Ax Accumulator
is specified. In most instructions where the ALU result transfers to one
of the Ax Accumulators, the flags represent the Ax Accumulator status.

2.4.1.3 Multiplier Unit

The CWDSP1650 uses the two’s complement, single-cycle, nonpipelined
multiplier for all core multiplication operations. The CWDSP1650
multiplier supports single-precision and double-precision multiplications,
and can perform three types of multiplication:

♦ Signed-by-signed

♦ Signed-by-unsigned

♦ Unsigned-by-unsigned
2-10 Functional Description

With the ALU and the multiplier, the CWDSP1650 can perform a single-
cycle Multiply-Accumulate (MAC) Instruction.

The Multiplier Unit implements the instructions listed in Table 2.1.

The Multiplier Unit consists of the following blocks:

♦ A 16-bit by 16/32-bit parallel multiplier

♦ Two 16-bit input registers (X and Y)

♦ A 32-bit output register (P)

♦ A product output shifter

Input Registers (X and Y) – The core reads and writes the X and Y
Registers as 16-bit operands. The X and Y Registers can also be used
as general-purpose temporary data registers. See Section 4.1.2, “X, Y,
and P Registers,” for more information.

Output Register (P) – The Multiplier Unit stores results in this 32-bit
Register. The core can only move the contents of the P Register to the

Table 2.1 Multiplier Unit Instructions

Multiply Instructions

MPY Multiply

MPYI Multiply Signed Short Immediate

MPYSU Multiply Signed by Unsigned

MAA Multiply and Accumulate Aligned Previous Product

MAASU Multiply Signed by Unsigned and Accumulate Aligned Previous Product

MAC Multiply and Accumulate Previous Product

MACSU Multiply Signed by Unsigned and Accumulate Previous Product

MACUS Multiply Unsigned by Signed and Accumulate Previous Product

MACUU Multiply Unsigned by Unsigned and Accumulate Previous Product

MSU Multiply and Subtract Previous Product

SQR Square

SQRA Square and Accumulate Previous Product
Computation and Bit-Manipulation Unit (CBU) 2-11

A0 and A1 Accumulators. See Section 4.1.2, “X, Y, and P Registers,” for
more information.

Product Output Shifter – The P Register is sign-extended to 36 bits
and then shifted. The data value can be shifted by one bit to the right,
one bit to the left, two bits to the left, or left unshifted. For a right shift,
the sign is extended to 36 bits; for a left shift, a zero is appended to the
LSBs. The PS bits in Status Register 1 control the shift operations; See
Section 4.4.2, “Status Register 1 (ST1),” for more information.

Double-Precision Multiplication – The CWDSP1650 supports double-
precision multiplication through several multiplication instructions and an
alignment option for the P Register. In multiply-accumulate aligned
instructions (MAA and MAASU instructions), the P Register is aligned
(shifted 16 bits to the right) before accumulating the partial multiplication
result.

Example: Multiplication of 32-bit by 16-bit fractional numbers, where two
multiplications are needed.

♦ First, the 16-bit signed multiplier is multiplied with the lower portion
of the 32-bit (double-precision) multiplicand using a signed-by-
unsigned multiply.

♦ Then, a signed-by-signed multiplication accumulate operation
multiplies the 16-bit signed number with the upper, signed portion of
the 32-bit multiplicand and sums this result with the previous result.

For the second operation, it is recommended that the aligned result of
the first multiplication is accumulated (using MAA instruction). For the
multiplications of two double-precision (32-bit) numbers, the unsigned-by-
signed operation can be used. If this operation requires a 64-bit result,
the unsigned-by-unsigned operation should be used. For details on the
various multiply instructions, see Chapter 7, “Instruction Set.”

2.4.2 Bit-Manipulation Unit (BMU)

The Bit Manipulation Unit (BMU) provides all functionality for shifting,
exponent extraction, normalization, saturation, and sign extension.
Figure 2.5 shows a block diagram of the CBU with the BMU components
shaded.
2-12 Functional Description

Figure 2.5 BMU Block Diagram

The Bit-Manipulation Unit (BMU) consists of the following components:

♦ A full 36-bit Barrel Shifter

♦ An Exponent unit (EXP)

♦ A Bit-Field Operation unit (BFO)

♦ Two 36-bit accumulator registers (B0 and B1)

♦ A Shift Value (SV) register

2.4.2.1 Barrel Shifter

The 36-bit Barrel Shifter performs arithmetic shift, logical shift, and rotate
operations. It is a single-cycle, nonpipelined Barrel Shifter.

The Barrel Shifter receives the source operand from any one of the four
accumulators (A0, A1, B0, or B1) or from the EDB (through bus
alignment logic). Either the contents of one of the registers or a data
memory location may provide the source operands. Source operands
can be addressed in either direct memory addressing mode or indirect
addressing mode and may be 16 or 36 bits wide. The destination of the

EDB

Arithmetic
Logical

Unit (ALU)

Multiplier

Computation Unit (CU)

A0-Accumulator

A1-Accumulator

Barrel ShifterExponent Unit

SV Register Bit-Field
Operations

Unit

B1-Accumulator

B0-Accumulator

Bit Manipulation Unit (BMU)

Saturation Unit
Computation and Bit-Manipulation Unit (CBU) 2-13

shifted value is always one of the four accumulators. The number of bit
shifts applied is determined by a constant embedded in the instruction
opcode or by a value in the SV register.

When the Barrel Shifter output is put into one of the accumulators, the
status of the flag bits represents the accumulator status. See Section
4.4.1, “Status Register 0 (ST0),” for more information on the status flag
bits.

2.4.2.2 Exponent Unit

The Exponent Unit (EXP) performs exponent evaluation of an
accumulator, a data memory location, or a register. The result of this
operation is a signed 6-bit value, sign-extended into 16 bits, which is
transferred into the Shift Value register (SV). Optionally, it can also be
sign-extended into 36 bits and transferred into one of the Ax
Accumulators. The source operand is unaffected by this calculation. The
source operand is 36-bits wide when it is an accumulator; 16-bits wide
when it is a data memory location or a register.

The Exponent Unit can also be used in floating-point calculations, where
it is useful to transfer the exponent result into both the SV register and
one of the Ax Accumulators.

2.4.2.3 SV Register

The CWDSP1650 uses the 16-bit Shift Value (SV) Register for shifting
operations and exponent calculation. The SV register value determines
the number of shifts during shift operations, and enables the core to
calculate the number of shifts at run time. The Exponent Unit transfers
its output to the SV register for use during floating point calculations.

2.4.2.4 Normalization

The CWDSP1650 performs normalization by one of two methods:

♦ In the first method, normalization takes two cycles and uses two
instructions: EXP and SHFC. EXP evaluates the exponent value of a
register, accumulator, or a data memory location. SHFC shifts the
evaluated number, according to the exponent result stored in the SV
register.
2-14 Functional Description

♦ The second method uses the NORM instruction. This method is
slower and has been retained for compatibility with the PineDSPCore
instruction set.

2.4.2.5 Bit-Field Operations

The Bit-Field Operation Unit (BFO) is attached to the ALU and sets,
resets, changes, or tests up to a 16-bit set within a data memory location
or a register. The BFO addresses the data memory location using either
a direct or an indirect memory address. The BFO results may affect the
flag bits in Status Register 0; see Section 4.4.1, “Status Register 0
(ST0),” for more information on the status flag bits.

The BFO sets, resets, and changes a 16-bit set with the SET, RST, and
CHNG read-modify-write instructions. Each instruction requires two
cycles and two words, with the 16-bit immediate mask value embedded
in the instruction opcode.

Three BFO testing instructions are available: TST0, TST1, and TSTB.
TST0 tests up to a 16-bit set for zeroes, TST1 tests for ones, and TSTB
tests for a specific bit (1 out of 16) in a data memory location or in a
register. BFO testing (TST0 or TST1) requires either one cycle when the
mask is in A0L or A1L, or two cycles when the mask value is embedded
in the instruction opcode. TSTB always requires a single cycle to execute.

For more details refer to the SET, RST, CHNG, TST0, TST1, and TSTB
instructions in Chapter 7, “Instruction Set.”

2.4.2.6 Bx-Accumulators

Each Bx Accumulator is organized as two regular 16-bit registers (B0H
and B0L, B1H and B1L) with a four-bit extension nibble. The core
accesses the two portions of each accumulator as 16-bit data registers,
and uses the Bx Accumulators as 16-bit source or destination data
registers in relevant instructions. See Section 4.1, “CBU Registers,” for
more details on the Bx Accumulators.

2.4.3 Saturation Unit

The Saturation Unit ranges the outputs of the four accumulators (A0, A1,
B0, B1) to fit on the internal bus. Clearing the SAT bit in Status Register
0 to zero enables the saturation unit, and setting SAT to one disables the
Computation and Bit-Manipulation Unit (CBU) 2-15

saturation overflow detection. See Section 4.4.1, “Status Register 0
(ST0),” for more information on the SAT bit.

The enabled saturation overflow process works as follows: with
saturation enabled, the Saturation Unit selects one of the four
accumulators for transfer and decides whether to transfer the upper or
the lower 16 bits of the accumulator. If the accumulator holds an
overflowed number (negative or positive number greater than 16 bits),
the Saturation Unit transfers the appropriate maximal (0xFFFF) or
minimal (0x0000) number that can be represented in 16 bits. Table 2.2
shows the values the Saturation Unit transfers with saturation enabled.

If the accumulator has not overflowed, the saturation unit transfers the
real accumulator value, regardless of the value of the SAT flag. If the SAT
bit disables saturation, the accumulator value passed is unaffected,
regardless of overflow. Saturation arithmetic also selectively limits overflow
from the high portion of an accumulator to the sign extension bits.

If saturation occurs while performing a move instruction (MOV or PUSH)
from one of the accumulators, the core does not change the value of the
accumulator. The value transferred is limited to a full-scale 16-bit positive
or negative value. Limiting is performed even if the transfer does not
immediately follow the accumulator overflow. When an accumulator is
swapped using the SWAP instruction, limitation is performed when the
value is transferred. The SAT bit enables saturation for move instructions.
When limiting occurs, the L flag in ST0 is set to one.

The LIM instruction activates saturation on a 36-bit Ax Accumulator.
When there is an overflow from the high portion of an Ax Accumulator to
the extension bits and an LIM instruction is executed, the accumulator is
limited to a full-scale 32-bit positive (0x7FFF FFFF) or negative
(0x8000 0000) value. Limiting is performed even if the LIM instruction

Table 2.2 Saturation Overflow

Value in Accumulator Transferred Value

Within limits Value of bits [31:0] unchanged

Above positive limit 0xFFFF

Below negative limit 0x0000
2-16 Functional Description

does not immediately follow the accumulator overflow. If the core swaps
an accumulator, limitation occurs when the value is operated on by the
LIM instruction. The LIM instruction can use the same accumulator for
both source and destination or it can use one Ax Accumulator, which
does not change and then transfer the limited result into the other
Ax Accumulator. For more details, refer to the LIM instruction in
Chapter 7, “Instruction Set.” When limiting occurs, the L flag bit in Status
Register 0 is set. Enabling or disabling the SAT bit has no effect on the
execution of the LIM instruction.

2.5 Data Address Arithmetic Unit (DAAU)

The Data Address Arithmetic Unit (DAAU) stores all address and
effective address calculations necessary to locate data operands in
memory. It contains two data address generators and six different data
address pointers. The DAAU provides both linear and modulo arithmetic
address generation capabilities. The DAAU operates in parallel with the
Computation Unit, thus freeing the ALU for calculation purposes.
Figure 2.6 shows a diagram of the DAAU functional blocks.

Figure 2.6 Data Address Arithmetic Unit (DAAU)

R0B

R1B
R0

R1

R2

R3

R4B
R4

R5

RB

Index
Logic

CFGJ

AAU2

AAU1

CFGI

CFGIB

Index ADDR

ADDR
Select

SP

EDB

XAB

YAB
Data Address Arithmetic Unit (DAAU) 2-17

2.5.1 DAAU Registers

The DAAU contains the following registers:

R0-R5 – General purpose and address generation registers. These
registers are divided into two groups, R0-R3 and R4-R5. Each group is
served by its own arithmetic unit. Either group can generate addresses
for the X data memory on the XAB address bus, but only R4-R5 can
generate addresses for the Y memory. During multiply or multiply-
accumulate instructions, a register from each group is used, one from
R0-R3 for generating XAB and one from R4-R5 for generating YAB.
R4-R5 can also address program memory during MOVD and MOVP
instructions.

RB – Index Base Register. This register value is added to the offset in
index mode addressing. The RB register is part of the global register set
and can be used as a general-purpose register.

SP – Stack Pointer. The SP register controls the pre- and post-
modification logic used in DAAU operations.

CFGI, CFGJ – Configuration Registers. These registers specify
parameters for modulo addressing and to increment/decrement step
control. CFGI and CFGJ affect the Address Arithmetic Units results
during modification of R0-R5. The CFGI register is used for registers R0-
R3 and CFGJ for registers R4-R5.

R0B, R1B, R4B, CFGIB – Context switch registers for the R0, R1, R4,
and CFGI registers.

After a DAAU address pointer (Rn) accesses the memory, it can be
postmodified through the STEP field in the Configuration Registers. A
length value can be associated with each pointer to implement step
modification of the pointer. The Configuration Registers also provide
supports for circular buffers through automatic up/down modulo
addressing.

The Rn registers may also be used for loop control. The MODR
instruction sets the R flag in Status Register 0 if the Rn register being
modified is zero following its execution. Conditional branch instructions
dependent on the value of the R flag can then implement loops.
2-18 Functional Description

2.5.2 Addressing Modes

The DAAU can generate data memory addresses using a number of
different methods:

♦ Long direct addressing

♦ Short direct (paged) addressing

♦ Stack Pointer operations

♦ Indexed addressing

♦ Indirect addressing

These addressing modes can be used to create data memory structures
for circular buffers, delay lines, FIFOs, other pointers to the software
stack. The following subsections describe each addressing mode in more
detail.

2.5.2.1 Long Direct Addressing Mode

Long Direct Addressing Mode uses 16 bits embedded in the instruction
opcode as the 16-bit data memory address. Any location in the 64 Kword
memory space can be directly addressed in two cycles.

2.5.2.2 Short Direct Addressing Mode

Short direct addressing uses eight bits embedded in the instruction
opcode as the LSB plus eight bits from the PAGE field of Status Register
1 as the MSB to compose the 16-bit data memory address. The PAGE
field can then be set to values between 0 and 255, where page 0
corresponds to addresses 0 to 255 in XRAM. This addressing mode
allows for single cycle data memory access.

2.5.2.3 Stack Pointer Operations

The core can use RB as either an array pointer or in conjunction with the
Stack Pointer (SP). When the stack is used for transferring subroutine
parameters, initializing RB with the value of the SP enables quick access
to these parameters. This method of operation is particularly useful for
high level language compilers, when RB can be used as a frame pointer
to hold the value of the SP as subroutines are entered.
Data Address Arithmetic Unit (DAAU) 2-19

The stack pointer is predecremented for a PUSH operation and
postincremented for a POP operation. In other words, the Stack grows
from a high memory address towards a low memory address.

2.5.2.4 Indexed Addressing Mode

Indexed addresses are derived by adding an offset to the RB register.
The offset is either a signed short immediate 7-bit value derived from a
field of the instruction opcode or a 16-bit immediate value (a second
instruction word). The base register content is unaffected by the
instruction. Notice that the index addressing mode, unlike the linear and
modulo addressing modes, uses address premodification and not
postmodification.

2.5.2.5 Indirect Addressing Modes

The indirect addressing method uses addresses taken from the R0-R5
registers to provide data or program (in MOVP and MOVD instructions)
memory addresses. These registers can be postmodified by the AAUs
with a linear or modulo operation. Table 2.3 lists the registers and bit
fields used during the indirect addressing modes.

Each Rn address register has a corresponding modulo enable bit in ST2.
Setting one of the Mn bits to one enables modulo addressing for the Rn
bit, and clearing the Mn bit to zero disables modulo calculation mode.
The MODI and MODJ bit fields of the CFGI and CFGJ registers contain
the modulo values to be used in the modulo calculation; the STEPI and
STEPJ bit fields contain the linear modifiers. Please remember that CFGI
(MODI/STEPI) modifies only the R0-R3 registers, while CFGJ
(MODJ/STEPJ) is used exclusively with the R4-R5 registers.

Linear (Step) Modification – In linear modification, the pointer (Rn) is
modified by postincrementing by one, postdecrementing by one, or

Table 2.3 Indirect Addressing Mode Bits

Address
Registers

Enable Bits
(ST2)

Configuration
Registers

Modulo Bit
Field

Linear Bit
Field

R0-R3 M0-M3 CFGI MODI STEPI

R4-R5 M4-M5 CFGJ MODJ STEPJ
2-20 Functional Description

adding the value specified in the STEPI/STEPJ field of the corresponding
CFGI/CFGJ register. The STEP bit field value is a two’s complement
seven-bit number that ranges from -64 to +63.

Modulo Modification – Modulo and linear modification methods
operate in a similar fashion, except that the range of address values is
limited by the MODI/MODJ bit fields of the CFGI/CFGJ registers. The
MODI/MODJ fields are nine bits in length and can specify circular buffers
of up to 512 (29) words.The six Mn bits in ST2 enable modulo calculation
for each register. The MODI and MODJ fields in the CFGI and CFGJ
registers determine the modulo settings. One address register from each
group may be updated in a single instruction cycle.

Modulo Constraints – For modulo calculation, the following constraints
must be satisfied (m = modulo factor; q = stepx, +1 or -1):

1. Only the p least-significant bits (LSBs) of Rn can be modified during
modulo operation, where p is the minimal integer that satisfies 2p ≥ m.
Rn should be initiated with a number whose p LSBs are less than m.

2. The constraints when modulo m is a power of 2 (full modulo
operation):

– The lower boundary (base address) must have zeros in at least
the k LSBs, where k is the minimal integer that satisfies
2k > m - 1.

– MODn (n denotes either I or J) must be loaded with m – |q|,
where |q| denotes the absolute value of q.

– m ≥ q.

3. The constraints when modulo m is not a power of 2:

– The lower boundary (base address) must have zeros in at least
the k least-significant bits, where k is the minimal integer that
satisfies 2k > m – |q|.

– MODx (x denotes I or J) must be loaded with m – |q|.

– m must be an integer multiple of q (always true for q = ±1).

– Rn should be initialized with a value that contains an integer
multiple of |q| or zeros in its k least-significant bits.
Data Address Arithmetic Unit (DAAU) 2-21

Modulo Modifier Operation – The modulo modifier operation, which is
a postmodification of the Rn register, is defined as follows:

♦ Rn ← 0 in k LSB; if Rn is equal to MODx in k LSBs and q ≥ 0,

♦ Rn ← MODx in k LSB; if Rn is equal to 0 in k LSBs and q < 0,

♦ Rn (k LSBs) ← Rn+q (k LSBs); otherwise

♦ When m = |q| (for example, MODx = 0), modulo operation is:
Rn ← Rn.

Modulo and Step Example 1 – For m = 7 with stepx = 1 (or +1
selected in instruction):

MODx = 7 – 1 = 6,
Rn = 0x0010.

The sequence of Rn values is: 0x0010, 0x0011, 0x0012, 0x0013,
0x0014, 0x0015, 0x0016, 0x0010, 0x0011, and so on.

Modulo and Step Example 2 – For m = 8 with stepx = 2:

MODx = 8 – 2 = 6,
Rn = 0x0010.

The sequence of Rn values is: 0x0010, 0x0012, 0x0014, 0x0016,
0x0010, 0x0012, and so on.

Modulo and Step Example 3 – For m = 9 with stepx = -3:

MODx = 9 – |-3| = 6,
Rn = 0x0016.

The sequence of Rn values is: 0x0016, 0x0013, 0x0010, 0x0016,
0x0013, and so on.

Modulo and Step Example 4 – For m = 8 with stepx = 3, (23 = 8) - full
modulo support:

MODx = 8 – 3 = 5,
Rn = 0x0010.

The sequence of Rn values is: 0x0010, 0x0013, 0x0016, 0x0011,
0x0014, 0x0017, 0x0012, 0x0015, 0x0010, 0x0013, and so on.
2-22 Functional Description

2.6 Interrupt Control Unit (ICU)

Figure 2.7 shows the Interrupt Control Unit (ICU).

Figure 2.7 Interrupt Control Unit

The ICU implements the protocol for the five external interrupts: BI/TRAP,
NMI, I0, I1 and I2. Each interrupt has its own acknowledge, so there are
ten signals in all. Interrupts are sampled on the rising edge of ICU_CLK,
which is a copy of the core clock but is not affected by wait states. Once
sampled as active, an interrupt is held until serviced, no matter what the
behavior of the interrupt request signal.

If two interrupts occur simultaneously (or nearly simultaneously) such
that both sampled and held in the ICU together, then logic in the ICU
prioritizes them, in the order from BI/TRAP (highest), NMI, I0, I1, to I2
(lowest), and services the highest priority interrupt first. The ICU
generates an interrupt status signal (ISTAT) to the PCU and an interrupt
vector. The interrupt vector is a program location to which program
control will jump when the interrupt is serviced. See Section 6.3,
“Interrupts,” for more information about interrupts, the interrupt signals,
and interrupt priority.

When the PCU services the interrupt request from the ICU, it signals the
ICU to acknowledge that interrupt and remove the interrupt status
condition. Only one interrupt is acknowledged on its own dedicated
acknowledge line to avoid clearing interrupts that have not been
serviced. The off-core logic must remove the interrupt request before
another interrupt can be serviced for a specific request line.

Nonmaskable
Interrupt

Interrupts
ICU

PCU

Interrupt
Acknowledges5

3

BI/TRAP
Interrupt

EDB
Interrupt Control Unit (ICU) 2-23

2-24 Functional Description

Chapter 3
Data Formats, Memory
and Addressing
The CWDSP1650 allocates two independent memory spaces: the data
space and the program space. The data and program memory spaces
are both 64 Kwords in size. The data memory space is further divided
into the X-Memory and Y-Memory spaces to support parallel data moves.
This chapter describes the mapping of the program and data spaces and
the different addressing modes to and from these spaces.

This chapter contains the following sections:

♦ Section 3.1, “Data Formats”

♦ Section 3.2, “Program Memory”

♦ Section 3.3, “Data Memory”

3.1 Data Formats

The CWDSP1650 supports six integer formats:

♦ 16-bit signed integers

♦ 16-bit unsigned integers

♦ 32-bit signed integers

♦ 32-bit unsigned integers

♦ 36-bit signed integers

♦ 36-bit unsigned integers

Figure 3.1 shows the signed and unsigned integer formats. In the figure,
an “s” in bit 15 or 31 refers to the sign bit.
3-1

Figure 3.1 Signed and Unsigned Integer Formats

Table 3.1 lists the valid ranges for the signed and unsigned integer
formats.

Unsigned 16-Bit Value
15 0

Integer

Signed 16-Bit Value
15 14 0

s Integer

Unsigned 32-Bit Value
31 0

Integer

Signed 32-Bit Value
31 30 0

s Integer

Unsigned 36-Bit Value
35 0

Integer

Signed 36-Bit Value
35 34 0

s Integer
3-2 Data Formats, Memory and Addressing

In general, the core performs arithmetic operations in 2’s complement
and treats the numbers as signed. Some exceptions do occur, however,
depending on the specific instruction.

Only the accumulators can support 36-bit integers. Usually, the
accumulators are seen as 36-bit signed registers or 32-bit registers if the
extension bits are not used (they are the same as bit 31, the sign bit).
The add a0, a0 instruction can involve either two 36-bit signed
numbers or two 32-bit signed numbers. See Section 4.1, “CBU
Registers,” for more information on the accumulators.

The MACUU instruction multiplies two unsigned numbers and stores the
result, which is a 32-bit unsigned number, in the P register. A subsequent
instruction that transfers the P register into an accumulator results in a
36-bit unsigned number in the accumulator.

In most cases, a 16-bit register is used as a signed 16-bit number (for
example, add r1, a1). Whether the register is signed or unsigned
depends on the instruction. For example, in the instruction add r1, a0
r1 is treated as a signed 16-bit number. But for the instruction
addl r1, a0 r1 is treated as an unsigned 16-bit number.

The Loop Counter (LC) Register can be used as a loop counter in the
BKREP instruction. In this case, the register value is unsigned. However,
the LC register can also be used as a general-purpose register in the
add lc, a0 instruction. In this case, the LC register value is signed. See
Chapter 4, “Registers,” for more information on the LC register and the
P register.

Table 3.1 Signed and Unsigned Integer Ranges

Data Type
Width
(Bits)

Lower
Limit Upper Limit

Signed 16 -215 215 – 1

Unsigned 16 0 216 – 1

Signed 32 -231 231 – 1

Unsigned 32 0 232 – 1

Signed 36 -235 235 – 1

Unsigned 36 0 236 – 1
Data Formats 3-3

3.2 Program Memory

The program memory address space is contained in an off-core PRAM
module and encompasses the program code, program constants,
interrupt routines, and reset routines. Figure 3.2 shows the program
memory map.

Figure 3.2 Program Memory Map

Addresses 0x0000 – 0x0016 contain the vector addresses for:

♦ Reset

♦ TRAP/BI (software/hardware interrupt)

♦ NMI (Nonmaskable interrupt)

♦ Maskable interrupts (Interrupts 0, 1, and 2)

The Reset, TRAP/BI, and NMI vectors are separated by two locations so
that branch instructions can be accommodated in those locations, if
desired. The maskable interrupt vectors are separated by eight words, so
fast interrupt service routines can be accommodated without branch
statement delays. Note that the TRAP/BI interrupt vector addresses are
reserved for use by the emulator during debug.

Main Program

Interrupt 2

Interrupt 1

Interrupt 0

NMI

TRAP/BI

Reset 0x0000

0x0002

0x0004

0x0006

0x000E

0x0016

0x001E

0xFFFF
3-4 Data Formats, Memory and Addressing

The CWDSP1650 supports an off-core wait-state generator to help
interface slow program memory devices. To provide this ability, the wait-
state generator provides a WAIT input to the core that stops the core
clock when asserted. This functionality is usually implemented within the
off-core Clock Control Unit.

The CWDSP1650 also supports internal program memory protection.
This mechanism allows the implementation of a secured version of an
internal program-based chip, which protects the internal program
memory from being read without proper authorization. See Section 6.6,
“Program Protection Mechanism,” for more details about the protection
operation.

3.2.1 Program Memory Addressing Modes

Program memory addresses are generated by the Program Control Unit
(PCU), which performs all instruction fetching, exception handling and
loop control. For the CWDSP1650, the program memory can be
addressed either in indirect addressing mode, or in special relative
addressing mode.

3.2.1.1 Indirect Addressing Mode

In this mode, the Rn registers of the DAAU and the accumulators are
used for addressing the program memory (used in the MOVD and MOVP
instructions.)

3.2.1.2 Special Relative Addressing Mode

In this mode, Branch-Relative (BRR) and Call-Relative (CALLR)
instructions support jumping relative to the PC (from PC – 63 to PC + 64)
that facilitates smaller and more easily relocatable code.

3.3 Data Memory

The CWDSP1650 data memory space is divided into separate
X-Memory and Y-Memory spaces to allow single cycle parallel data
accesses. The size and configurations of these memories are
determined according to the MEM_CFG[2:0] core input. Table 3.2 lists
the X-Memory and Y-Memory configurations available and the
corresponding MEM_CFG[2:0] value.
Data Memory 3-5

The X-Memory and Y-Memory can contain RAM, ROM, and I/O. The
core also uses memory-mapped I/O; several addresses of the data
space may be reserved for peripherals, depending on the specific chip
configuration. The core implements slow peripheral interfacing through
an off-core BIU, which controls the number of wait states. To control the
wait states, the BIU uses the WAIT input of the core to stop CORE_CLK
during wait stated accesses.

3.3.1 Data Memory Addressing Modes

The CWDSP1650 supports five data memory addressing modes:

♦ Short direct

♦ Long direct

♦ Indirect

♦ Short index

♦ Long index

The software stack, which is located in the data memory, is addressed
using the Stack Pointer (SP) register. See Section 4.2.4, “Stack Pointer
Register (SP),” for more information.

Table 3.2 Data Memory Address Mapping

MEM_CFG[2:0]

Y-Memory X-Memory

Size (Words) Address Range Size (Words) Address Range

000 32 K 0x8000 to 0xFFFF 32 K 0 to 0x7FFF

001 16 K 0xC000 to 0xFFFF 48 K 0 to 0xBFFF

010 8 K 0xE000 to 0xFFFF 56 K 0 to 0xDFFF

011 4 K 0xF000 to 0xFFFF 60 K 0 to 0xEFFF

100 2 K 0xF800 to 0xFFFF 62 K 0 to 0xF7FF

101 1 K 0xFC00 to 0xFFFF 63 K 0 to 0xFBFF

110 512 0xFE00 to 0xFFFF 63.5 K 0 to 0xFDFF

111 256 0xFF00 to 0xFFFF 63.75 K 0 to 0xFEFF
3-6 Data Formats, Memory and Addressing

3.3.1.1 Short Direct Addressing

In the short direct configuration, the 16-bit address is generated by
appending the 8-bit PAGE field from Status Register 1 to the 8 LSBs of
the opcode (i.e. the PAGE field forms the MSB of the address). Each
page consists of 256 words, as shown in Table 3.3. In short direct
addressing, all memory locations in the 64-Kword space can be directly
accessed in a single cycle.

3.3.1.2 Long Direct Addressing

In the long direct configuration, the 16-bit address is taken directly from
the opcode as the second word of the instruction. Using long direct
addressing, all memory locations in the 64 Kword space can be directly
accessed in two cycles.

3.3.1.3 Indirect Addressing

Indirect addressing has two stages: address generation and pointer
postmodification. The Rn registers (pointers) of the DAAU are used as
16-bit addresses for indirect addressing the X-Memory and Y-Memory. In
one-operand addressing, one pointer supplies the address for the
transaction. In two-operand addressing, two pointers simultaneously
select the address to the X-Memory and Y-Memory spaces. See Section
2.5.2.5, “Indirect Addressing Modes,” for details of pointer
postmodification.

Table 3.3 Short Direct Addressing Page Values

Page X-Memory Address Range

0 0 to 255

1 256 to 511

... ...

255 0xFF00 to 0xFFFF
Data Memory 3-7

3.3.1.4 Short Index Addressing

The base register RB plus an index value (offset7) are used for index-
based indirect addressing of the X-Memory or the Y-Memory. The index
value is a short immediate value embedded in the instruction opcode
(offset7), and can range from -64 to +63. The actual address is
RB + offset7, the RB contents being unaffected by the operation.

3.3.1.5 Long Index Addressing

The contents of base register RB plus a 16-bit immediate index value are
used for index-based indirect addressing of the X-Memory and
Y-Memory. The immediate index value is embedded in the instruction
opcode, and can range from -32768 to +32767. The contents of RB are
unaffected.
3-8 Data Formats, Memory and Addressing

Chapter 4
Registers
This chapter describes the CWDSP1650 registers in detail and defines
the bit fields within them. Chapter 4 is further divided into the following
sections:

♦ Section 4.1, “CBU Registers”

♦ Section 4.2, “DAAU Registers”

♦ Section 4.3, “PCU Registers”

♦ Section 4.4, “Status Registers”

♦ Section 4.5, “User-Defined Registers”

Figure 4.1 shows the accessible registers/counters in their respective
functional blocks within the core. Internal CWDSP1650 functional blocks
are shown inside the shaded area.

Figure 4.1 CWDSP1650 Registers

User-DefinedEXT0

EXT1

EXT2

EXT3

Registers
CBU PCUPC

LC

REPC

ICR

DVM

DAAUR0 R4

R1 R5

R2

R3

CFGI

CFGJ

SP

RB

MIXP

Status

ST0

ST1

ST2

Registers
BMU

B0H

B1H

B0L

B1L

SV

CU

A0E A0H

A1E A1H

A0L

A1L

X Y P
4-1

The following sections contain detailed descriptions for each of these
components and their programmable registers. Unless otherwise stated,
all on-core registers, accumulators and counters clear to zero after reset.

4.1 CBU Registers

The Computation and Bit Manipulation Unit contain four accumulators
(A0, A1, B0, B1), two multiplier input registers (X, Y), a multiplier product
register (P), and a shift value register. Table 4.1 lists the CBU registers;
the remainder of this section describes each register set in detail.

4.1.1 Ax and Bx Accumulators

There are four accumulators: two Ax Accumulators in the Computation
Unit (CU), and two Bx Accumulators in the Bit Manipulation Unit (BMU).
Each accumulator is organized as two regular 16-bit registers with 4-bit
extensions as shown in Table 4.2.

Table 4.1 CBU Registers

Register Abbreviations Page

Ax Accumulators (AxE, AxH, or AxL) 4-3

Bx Accumulators (BxE, BxH, or BxL) 4-5

X Register – 4-6

Y Register – 4-6

P Register – 4-6

Interrupt Context
Switching Registers

– 4-7

Shift Value Register SV 4-9
4-2 Registers

The core accesses the upper and lower portions of each accumulator as
separate 16-bit data registers and uses them as 16-bit source or
destination registers in all relevant instructions.

Saturation arithmetic selectively limits overflow from the high portion of
an accumulator to the extension bits, when performing a move instruction
from one of the accumulators through the EDB, or when using the LIM
instruction which forces saturation on the 36-bit accumulator. For more
information about saturation, see Section 2.4.3, “Saturation Unit.”

All four accumulators clear to zero after a core reset.

4.1.1.1 Ax Accumulators (A0 and A1)

The Ax Accumulators store the source/destination operands of the ALU,
Barrel Shifter, or Exponent unit. AxH and AxL may also be used as
general purpose 16-bit data registers.

Extension Nibbles – 4-bit extension nibbles A0E and A1E protect
against 32-bit overflow. These two nibbles are accessed as bits 15 to 12
of the status registers ST0 (for A0E) and ST1 (for A1E). When the result
of an ALU output crosses bit 31, the Extension Flag (E) in ST0 is set,
which indicates a crossing of the AxH MSB. An extension nibble allows
for up to 15 overflows or underflows. When one of these limits is
exceeded, the sign is lost beyond the MSB of the ALU output and/or the
extension nibble MSB. When this happens, the Overflow Flag (V) is set,
which also causes the Limit Flag (L) to be set. Refer to Section 4.4,
“Status Registers,” for more details on the extension, overflow, and limit
flags.

Table 4.2 Ax and Bx Accumulator Organization

Accumulator
Upper 16-Bit

Register
Lower 16-Bit

Register
4-Bit

Extension

A0 A0H A0L A0E

A1 A1H A1L A1E

B0 B0H B0L B0E

B1 B1H B1L B1E
CBU Registers 4-3

Sign Extension – The Core normally sign extends smaller operands
written to the 16-bit AxL or AxH registers within the 36-bit Ax
Accumulators. This can happen when data from either the EDB, the ALU,
or the Exponent Unit (during some CBU operations) is written to one of
these accumulators. Specific instructions can also be used to suppress
sign extension, for example, mov 100, a0, eu . See Chapter 7,
“Instruction Set,” for details.

Loading of Ax Accumulators – When an instruction loads an Ax
Accumulator with a 16-bit data value, the complete 36-bit word of the
accumulator is affected as shown in Table 4.3, depending on how the
accumulator is specified in the instruction field:

For example, the instruction mov r0, a1l loads a 16-bit value into A1L,
and sign extends A1H; the instruction mov r1, a1h loads a 16-bit value
into A1H, and clears A1L. The instructions ADDL and ADDH are
exceptions. The ADDL instruction treats the 16-bit source operand as an
unsigned number, extends this number to 36 bits by adding zeroes, and
adds the result to the destination 36-bit Ax Accumulator. The ADDH
instruction loads a 16-bit value into AxH, but leaves AxL unaffected. An
instruction that loads a 36-bit value into an Ax Accumulator does not
follow the above rules, such as a shift instruction or the SWAP
instruction.

See Section 4.1.1.3, “Swapping the Accumulators,” for a detailed account
of accumulator swapping, and Chapter 7, “Instruction Set,” for more
information on the MOV, ADDL, ADDH, and SWAP instructions.

Table 4.3 Ax Accumulator Loading Values

Accumulator eu 1

1. Extension unaffected. See Table 7.4 for a more complete description.

Accumulator Fields after Instruction Execution

AXE AXH AXL

AX – Sign-extended Sign-extended DATA

AXL – Cleared Cleared DATA

AXH – Sign-extended DATA Cleared

AXH eu Unaffected DATA Cleared
4-4 Registers

4.1.1.2 Bx Accumulators (B0 and B1)

Each Bx Accumulator is either a source operand of the BMU Exponent
Unit or a source/destination operand of the BMU Barrel Shifter.

Extension Nibbles – Extension nibbles B0E and B1E protect against
32-bit overflows. When the result of the Barrel Shifter crosses bit 31, it
sets the Extension Flag (E) in Status Register 0, which indicates a
crossing of the BxH MSB. When the sign is lost beyond the MSB of the
Barrel Shifter and/or the MSB of the extension nibble, the Overflow (V)
and Limit (L) flags in Status Register 0 are set. See Section 4.4, “Status
Registers,” for more details about the extension, overflow, and limit flags.

The extension bits B0E and B1E are not accessible directly. They can be
accessed with the aid of a single-cycle shift instruction, or by swapping
to the Ax Accumulator.

Sign Extension – The core normally sign extends smaller operands
written to the 16-bit BxL or BxH registers within the 36-bit Bx
Accumulators. This can happen when either data from the EDB or the
Barrel Shifter (in shift operations) is written to the Bx Accumulators.

Loading of Bx Accumulators – When an instruction loads a Bx
Accumulator with a 16-bit data value, the 36-bit accumulator is affected
as shown in Table 4.4, depending on how the accumulator is specified in
the instruction field.

For example, the instruction mov r0, b1l loads a 16-bit value into B1L,
and sign extends B1H; the instruction mov r1, b1h loads a 16-bit value
into B1H, and clears B1L. However, an instruction that loads a 36-bit

Table 4.4 Bx Accumulator Loading Values

Accumulator

Accumulator Fields after Instruction Execution

BXE BXH BXL

BX Sign-extended Sign-extended DATA

BXL Cleared Cleared DATA

BXH Sign-extended DATA Cleared
CBU Registers 4-5

value into a Bx Accumulator does not follow the above rules, such as
using shift instructions or SWAP instruction.

See Section 4.1.1.3, “Swapping the Accumulators,” for a detailed account
of accumulator swapping, and Chapter 7, “Instruction Set,” for more
information on the MOV, ADD, and SWAP instructions.

4.1.1.3 Swapping the Accumulators

The SWAP instruction swaps the contents of the Ax Accumulators and
the Bx Accumulators in a single cycle. Either two 36-bit registers or all
four 36-bit registers can be swapped in one cycle. Swapping can also be
enabled between a specific Ax Accumulator and a specific Bx
Accumulator such that, in the same cycle, a Bx Accumulator is swapped
with an Ax Accumulator. Similarly, swapping is enabled between a
specific Bx Accumulator into an Ax Accumulator, and in the same cycle
from that Ax Accumulator into another Bx Accumulator.

For a summary of the 14 swap options, refer to the SWAP instruction in
Chapter 7, “Instruction Set.”

4.1.2 X, Y, and P Registers

The X, Y, and P registers are part of the Multiplier Unit in the CU and
can be used as general-purpose data registers. For more information
about these three registers, see Section 2.4.1.3, “Multiplier Unit.”

The 16-bit X and Y registers are input registers, which the core reads or
writes as 16-bit operands. The core receives information from the
X register through the XDB and from the Y Registers through the YDB;
the core writes through the EDB for both registers. Both the X and
Y registers clear to zero after reset.

The 32-bit P register is used to store multiplication results, and can be
shifted prior to input into the ALU or to support double precision
multiplication. The contents of the P register can only be moved to the
Ax Accumulators. The most-significant 16 bits of the P register (PH) can
be written through the EDB bus, which enables a single-cycle restore of
these bits during an interrupt service routine. The core updates the
P register only after a multiply instruction and not after a change in the
input registers. Figure 4.2 shows the P register bit field.
4-6 Registers

Figure 4.2 P Register

The P register supports double-precision during a multiply instruction. To
shift the partial multiplication result, the contents of the P register is
shifted 16 bits to the right before the contents are accumulated. For more
details, see the multiply instructions in Chapter 7, “Instruction Set.”

4.1.3 Interrupt Context Switching Registers

When an interrupt occurs the contents of the registers used by the
interrupt service routine must be saved. This allows the original program
to safely resume operation after the interrupt service routine is complete.
To reduce the overhead of saving these registers, the core can optionally
activate a context switching mechanism for the interrupts NMI, INT0,
INT1, and INT2. Setting the corresponding bit in the ICR activates the
context switching mechanism for the specified interrupt. See
Section 4.3.2, “Internal Configuration Register (ICR),” for more
information on the context switching enable bits (IC[2:0], NMIC).

If an interrupt occurs while context switching is enabled, certain registers
are saved automatically without an increase in interrupt latency. When
returning from the interrupt service routine the original register values are
restored automatically (see the RETI and CNTX instructions in
Chapter 7, “Instruction Set,” for more information.)

Context switching involves three parallel mechanisms:

1. Push to/pop from dedicated shadow bits

2. Swap of a dedicated page register

3. Swap between the A1 Accumulator and B1 Accumulator

The core saves the ST0[0], ST0[11:2], ST1[11:10], and ST2[7:0] register
bits automatically as shadow bits (in a one stack level register.) The data
bits can be pushed to or popped from the shadow registers. Figure 4.3
shows the Shadow Register mapping for Status Register 0.

31 16 15 0

PH PL
CBU Registers 4-7

Figure 4.3 ST0 and Shadow Registers

Figure 4.4 shows the Shadow and Alternative Registers available for the
shadow mapping of Status Register 1.

Figure 4.4 ST1 and Shadow Registers

The core swaps the page bits in ST1[7:0] to an alternative register
instead of the shadow register. When a context switch occurs, the current
page is saved into the alternative register, and the previous (stored)
value of the page is restored. The stored value should point to the
interrupt page to avoid additional initialization. When returning from the
interrupt, the interrupt page is saved again into the alternative register for
the next interrupt, and the page used before entering the interrupt
service routine is swapped with the PAGE bits in ST1. The alternate
PAGE bits are not accessible directly. They can be set up through the
normal PAGE bits using the CNTX instruction.

Figure 4.5 shows the Shadow Register mapping for Status Register 2.

15 12 11 10 9 8 7 6 5 4 3 2 1 0

A0E Z M N V C E L R IM1 IM0 IE SAT

Shadow Z M N V C E L R IM1 IM0 SAT

15 12 11 10 9 8 7 0

A1E PS RES PAGE

Shadow PS

Alternative PAGE
4-8 Registers

Figure 4.5 ST2 and Shadow Registers

During a context switch the core can automatically swap the A1
Accumulator and B1 Accumulators, therefore, it is normally convenient to
store data needed for interrupt routines in the B1 Accumulator.

4.1.4 Shift Value Register

The CWDSP1650 uses the 16-bit Shift Value (SV) Register for shifting
operations and exponent calculation. The value in SV determines the
number of shifts during shift operations, and enables the Core to
calculate the number of shifts at run time. The Exponent Unit transfers
its output to the SV Register for use during floating point calculations.
This register can also be used as a general-purpose data register. The
SV register clears to zero after reset.

4.2 DAAU Registers

This section describes the Data Address Arithmetic Unit (DAAU)
registers. These registers are normally used in generation of addresses
but some can also be used as general purpose 16-bit registers. Further
information about how to use these registers is available in Section 2.5,
“Data Address Arithmetic Unit (DAAU).” Table 4.5 lists all DAAU registers,
with descriptions of each in the following subsections.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IP1 IP0 IP2 RES IU1 IU0 OU1 OU0 S IM2 M5 M4 M3 M2 M1 M0

Shadow S IM2 M5 M4 M3 M2 M1 M0
DAAU Registers 4-9

4.2.1 Address Registers (R0-R5)

The six 16-bit Address Registers (Rn) are divided into two groups: R0 to
R3, and R4 to R5. These registers can be used to accesses X and Y
memory spaces or program memory space as shown in Table 4.6.

The CWDSP1650 can simultaneously access data in X and Y memory
spaces during multiply operations. For example, mac (r4), (r0), a0
performs a multiply on the Y space data (pointed to by R4) and the data
in X space (pointed to by R0) and adds the result to accumulator A0.

The Rn registers can also be used as loop counters with the MODR
instruction, which is used to increment or decrement the Rn registers.
The R flag in Status Register 0 is set if the MODR (or any Rn
modification operation) results in that Rn register being set to zero. Refer
to the R flag in Section 4.4.1, “Status Register 0 (ST0),” for more
information.

Table 4.5 DAAU Registers

Register Abbreviations Page

Address Registers 0-5 R0-R5 4-10

Configuration Registers CFGI, CFGJ 4-11

Base Register RB 4-11

Stack Pointer Register SP 4-12

Alternative Bank Registers R0B, R1B, R4B, CFGIB 4-12

Min/Max Pointer Latching Register MIXP 4-13

Table 4.6 Rn Register Grouping

Address Bus Associated Rn Registers

XAB R0 through R5

YAB R4 through R5

IAB R4 through R5
4-10 Registers

4.2.2 Configuration Registers

The configuration registers, CFGI and CFGJ, define the modulo and/or
step values for the addressing modes used in conjunction with the Rn
registers. They are split into two different fields: the STEP field and the
MODULO field. The STEP field is used in linear and modulo modes, and
the MODULO field is used only in modulo mode. Table 4.7 shows when
these fields are valid in these modes.

See Section 2.5.2, “Addressing Modes,” for information on how the two
fields affect the Rn register pointers. Figure 4.6 shows the CFGI Register
bit fields, and Figure 4.7 shows the CFGJ Register bit fields. The CFGI
and CFGJ registers clear to zero after reset.

Figure 4.6 CFGI Configuration Register

Figure 4.7 CFGJ Configuration Register

CFGI is associated with R0–R3, and CFGJ is associated with R4–R5.
This enables simultaneous addressing over both the XAB and either the
YAB or the IAB.

4.2.3 Base Register (RB)

The RB register is used in indexed addressing mode to define the base
address of the data being addressed. See Section 2.5.2.4, “Indexed
Addressing Mode,” for further information. RB can also be used as a 16-bit
general-purpose register. The RB register clears to zero after reset.

Table 4.7 Validity of STEP and MODULO in Different Addressing
Modes

Mode STEP Field Valid MODULO Field Valid

Linear Yes No

Modulo Yes Yes

15 7 6 0

MODI STEPI

15 7 6 0

MODJ STEPJ
DAAU Registers 4-11

4.2.4 Stack Pointer Register (SP)

The CWDSP1650 provides a software stack up to 64 Kwords in size. The
16-bit Stack Pointer (SP) is a global register that points to the address
of the top value in the stack, which is also the last value pushed onto the
stack. The stack fills from high-memory addresses to low-memory
addresses. Values can be pushed to and popped from the stack using
the PUSH and POP instructions. A POP instruction postincrements the
SP; a PUSH instruction predecrements the SP. The Program Counter
(PC) is automatically pushed onto the stack whenever a subroutine call
or an interrupt occurs and popped off the Stack upon execution of return
opcodes. The SP register clears to zero after reset.

To bypass the POP mechanism, execute the instruction mov (sp), reg ,
which causes memory to be read from an address pointed to by the SP.
The MOV instruction reads the top of the stack without affecting the SP.

The software stack can reside anywhere in the data space (X-Memory
or Y-Memory). The Rn and RB registers can also access the stack.

The stack generally is used for transferring parameters to subroutines
and for automatic variables (such as local subroutine variables). Thus,
after the initialization of the base register (RB) with the SP value, the
MOV, ADD, SUB, CMP, AND, OR, and XOR instructions can typically
directly access subroutine parameters using the indexed addressing
mode.

4.2.5 Alternative Bank Registers

The DAAU contains an alternative bank of four registers: R0B, R1B, R4B,
and CFGIB. These are the alternatives to the normal registers R0, R1,
R4, and CFGI. Only one of each pair of normal and alternative registers
is accessible at a time, with the bank selection made through the BANKE
instruction. The alternative registers can be used as required by the
programmer, typically for interrupt service routines. The BANKE
instruction exchanges (swaps) the contents of the current register with
the alternative register. The instruction includes a list of registers to be
exchanged in a single cycle. Up to 4 registers can be included in the list.
Table 4.8 shows the Address or Configuration Registers with their
corresponding Alternative Bank Registers. The register R0B, R1B, R4B,
and CFGIB clear to zero after reset.
4-12 Registers

4.2.6 Minimum/Maximum Pointer Latching Register (MIXP)

MIXP is a 16-bit register that is used to latch the value of the R0 register
during MIN/MAX operations. Note that the MIXP register cannot be read
in the instruction immediately following the MAX/MIN instruction. The
MIXP register can also be used as a general-purpose 16-bit register and
is cleared to zero after reset.

4.3 PCU Registers

The core uses the Program Control Unit Registers to control program
flow, interrupts, loops, and to support on-chip emulation. See
Section 2.3, “Program Control Unit (PCU),” for additional information
about the PCU architechture. Table 4.9 lists all the PCU registers
described in this section.

Table 4.8 Alternative Bank Registers

Address /Configuration
Register

Alternative Bank
Register

R0 R0B

R1 R1B

R4 R4B

CFGI CFGIB

Table 4.9 PCU Registers

Register Abbreviations Page

Data Value Match Register DVM 4-14

Internal Configuration Register ICR 4-14

Program Counter PC 4-15

Loop Counter LC 4-15
PCU Registers 4-13

4.3.1 Data Value Match Register

The 16-bit Data Value Match (DVM) Register supports the optional
on-chip emulation module (OCEM), which resides off-core. The OCEM
uses the DVM to generate a breakpoint on a data value match. A data
value match occurs when the DVM register content is the same as the
data on the EDB. The DVM register is on-core in order to enable
comparisons for any transaction, since data is not always transferred off-
core. The DVM register clears to zero after reset.

The DVM register is also used during the service of a software TRAP.
The contents of the Program Counter (PC) is transferred to the DVM
register and to the software stack. The DVM register contents can only
be transferred through the Ax and Bx Accumulators.

4.3.2 Internal Configuration Register (ICR)

Figure 4.8 shows the format of Internal Configuration Register (ICR). The
ICR includes the context switching bits and the block-repeat indication.
A core reset clears all bits in the ICR to zero.

Figure 4.8 Internal Configuration Register (ICR)

RES Reserved [15:8]
These bits are reserved for LSI Logic. These bits always
read as zero and are not affected by a write.

BC[2:0] Block Repeat Nesting Counter [7:5], R
These bits hold the current block-repeat loop nesting
level. The BCx bits are read only.

15 8 7 6 5 4 3 2 1 0

RES BC2 BC1 BC0 LP IC2 IC1 IC0 NMIC

BC2 BC1 BC0 Block-Repeat Counter State Description

0 0 0 Not within a block-repeat loop

0 0 1 First block-repeat level (outer loop)

0 1 0 Second block-repeat level

0 1 1 Third block-repeat level

1 0 0 Fourth block-repeat level (inner loop)
4-14 Registers

The BCx bits clear when either the processor resets, or
the LP bit clears to zero.

LP INLOOP 4, R/W
LP is set when a block loop repeat occurs; otherwise, LP
is cleared to zero. Clearing LP also clears the block
repeat nesting counter bits (BCx).

Writing a zero to the LP bit has no effect. Writing a one
to LP clears the bit to zero and also causes a break from
all current levels of block repeat nesting. For more
information on block repeats, see Section 2.3, “Program
Control Unit (PCU).”

IC2 INT2 Context Switching Enable 3, R/W
IC2 is the context switching enable for INT2. Setting IC2
enables context switching when an INT2 interrupt occurs.
Clearing IC2 disables context switching for the INT2
interrupt.

IC1 INT1 Context Switching Enable 2, R/W
IC1 is the context switching enable for INT1. Setting IC1
enables context switching when an INT1 interrupt occurs.
Clearing IC1 disables context switching for the INT1
interrupt.

IC0 INT0 Context Switching Enable 1, R/W
IC0 is the context switching enable for INT0. Setting IC0
enables context switching when an INT0 interrupt occurs.
Clearing IC0 disables context switching for the INT0
interrupt.

NMIC NMI Context Switching Enable 0, R/W
NMIC is the context switching enable for NMI. Setting
NMIC enables context switching when an NMI interrupt
occurs. Clearing NMIC disables context switching for the
NMI interrupt.

4.3.3 Program and Loop Counters

The PC (Program Counter) and LC (Loop Counter) are directly
accessible 16-bit counters. The PC always contains the address of the
next instruction to be executed. The LC register can be used as an index
inside the block-repeat loop, or for determining the value of the block-
repeat counter when a jump out of the block-repeat loop occurs. The
block-repeat Loop Counter is a global register and can also serve as a
16-bit general purpose register. PC and LC clear to zero after reset.
PCU Registers 4-15

4.4 Status Registers

Three status registers hold the flags, status bits, control bits, user I/O
bits, and paging bits for direct addressing. The contents of each register
and their field definitions are described in the following subsections.
Table 4.10 lists the Status Registers for the CWDSP1650.

4.4.1 Status Register 0 (ST0)

Figure 4.9 shows the fields within Status Register 0. Each field is
described below. The flags (Z, M, N, V, C, E, and L) indicate the result
of the last ALU, BFO, or Barrel Shifter output operation. When one of
these outputs is latched into a destination accumulator, the flags
normally indicate that accumulator status. All bits in this register are
read/write and clear during a processor reset.

Figure 4.9 Status Register 0 (ST0)

A0E Accumulator 0 Extension [15:12], R/W
This field contains the contents of the Accumulator 0
Extension after an operation that used Accumulator 0 as
a destination.

Z Zero Flag 11, R/W
The Zero Flag is set if the ALU, BFO, or Barrel Shifter
output used at the last instruction equals zero. The zero
flag also indicates the result of the test bit instructions
(TST0, TST1, or TSTB).

Table 4.10 Status Registers

Register Abbreviations Page

Status Register 0 ST0 4-16

Status Register 1 ST1 4-18

Status Register 2 ST2 4-19

15 12 11 10 9 8 7 6 5 4 3 2 1 0

A0E Z M N V C E L R IM1 IM0 IE SAT
4-16 Registers

M Minus Flag 10, R/W
The Minus Flag is set if the ALU, BFO, or Barrel Shifter
output used at the last instruction is a negative number;
and cleared otherwise. The minus flag is identical to the
most-significant bit of the output (bit 35).

N Normalized Flag 9, R/W
The Normalized Flag is set if the least-significant 32 bits
of the ALU or Barrel Shifter output used at the last
instruction are normalized; cleared otherwise. In other
words, N is set if:

Z ∨ {(bit 31 ⊕ bit 30) ∧ ¬E}

V Overflow Flag 8, R/W
The Overflow Flag is set if an arithmetic overflow (36-bit
overflow) occurs after an arithmetic operation, and is
cleared otherwise. The overflow flag indicates that the
result of an operation cannot be represented in 36 bits.

C Carry Flag 7, R/W
The Carry Flag is set if the result of an add generates a
carry, or if the result of a subtract generates a borrow; it
is cleared otherwise. The carry flag also reflects the
rotated bit, or the last bit shifted out of the 36-bit result.

E Extension Flag 6, R/W
The Extension Flag is set if bits [35:31] of the ALU or
Barrel Shifter output used at the last instruction are not
identical; otherwise it is cleared. Clearing the extension
flag indicates that the four most-significant bits of the
output are sign extensions of bit 31 and can be ignored.

L Limit Flag 5, R/W
The Limit Flag has two functions: to latch the overflow
flag, and to indicate limitation during accumulator move
or LIM operations. The L bit is set if the overflow flag is
set or if a limitation occurs either when an accumulator
move instruction (MOV or PUSH) through the data bus is
used, or when a limitation occurs when the LIM
instruction executes. Otherwise, L is not affected.

R Rn Register is Zero Flag 4, R/W
The R flag is set if the result of an Rn modification
operation (Rn; Rn+1; Rn-1; Rn+S) is zero. Only the
MODR and NORM instructions affect this flag. The R flag
Status Registers 4-17

status remains unchanged until one of the above
instructions is used.

IM1 Interrupt 1 Mask 3, R/W
IM1 is the interrupt mask for INT1. Clearing IM1 to zero
disables the interrupt, setting IM1 to one enables the
interrupt.

IM0 Interrupt 0 Mask 2, R/W
IM0 is the interrupt mask for INT0. Clearing IM0 to zero
disables the interrupt, setting IM0 to one enables the
interrupt.

IE Interrupt Enable 1, R/W
Clearing IE to zero disables all maskable interrupts,
setting IE to one enables all maskable interrupts. To
modify the interrupt enable bit, use the instructions EINT
(enable interrupts) or DINT (disable interrupts).

SAT Saturation Mode Disable 0, R/W
Clearing SAT to zero enables saturation mode when the
contents of the accumulator are transferred to the data
bus. Setting SAT to one disables the saturation mode.

Note: The SAT bit values have no affect on the LIM
instruction operation.

4.4.2 Status Register 1 (ST1)

Figure 4.10 shows the fields within Status Register 1. Each bit field of
ST1 is described below. All bits clear to zero after reset.

Figure 4.10 Status Register 1 (ST1)

A1E Accumulator 1 Extension [15:12], R/W
This field contains the contents of the Accumulator 1
Extension after an operation that used Accumulator 1 as
a destination.

PS Product Shifter Control [11:10], R/W
The PS bits determine the scaling shift of the P register
output. Writing to the ST1 Register modifies the PS bits.

15 12 11 10 9 8 7 0

A1E PS RES PAGE
4-18 Registers

The PS bits control whether the product is shifted right by
one, left by one, left by two, or is not shifted.

RES Reserved [9:8]
These bits are reserved for LSI Logic. These bits always
read as ones and are not affected when written.

PAGE Data Memory Space Page [7:0], R/W
In direct address mode, these bits address the data
memory page. Pages are addressed in 128-byte
increments. See Section 3.3.1.1, “Short Direct
Addressing,” for more information on direct addressing.

To modify these bits, either write to the ST1 Register, use
the LOAD instruction, or use the LPG instruction.

4.4.3 Status Register 2 (ST2)

Figure 4.11 shows the fields within Status Register 2. Each field is
described below.

Figure 4.11 Status Register 2 (ST2)

IP1 Interrupt Pending 1 15, R
IP1 is the interrupt pending bit for the INT1 interrupt. IP1
is set when the INT1 interrupt is active. IP1 reflects the
interrupt level regardless of the mask bit.

IP0 Interrupt Pending 0 14, R
IP0 is the interrupt pending bit for the INT0 interrupt. IP0
is set when the INT0 interrupt is active. IP0 reflects the
interrupt level regardless of the mask bit.

PS Number of Shifts

0 0 No shift

0 1 Shift right by one

1 0 Shift left by one

1 1 Shift left by two

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IP1 IP0 IP2 RES IU1 IU0 OU1 OU0 S IM2 M5 M4 M3 M2 M1 M0
Status Registers 4-19

IP2 Interrupt Pending 2 13, R
IP2 is the interrupt pending bit for the INT2 interrupt. IP2
is set when the INT2 interrupt is active. IP2 reflects the
interrupt level regardless of the mask bit.

RES Reserved 12
This bit is reserved for LSI Logic. It reads as one and is
not affected when written.

IU1 User-Defined Input 1 11, R
IU1 reflects the state of the core input User-Defined Input 1.

IU0 User-Defined Input 0 10, R
IU0 reflects the state of the core input User-Defined Input 0.

OU1 User-Defined Output 1 9, R/W
OU1 determines the state of the core output User-
Defined Output 1. Processor reset clears OU1 to zero.

OU0 User-Defined Output 0 8, R/W
OU0 determines the state of the core output User-
Defined Output 0. Processor reset clears OU0 to zero.

S Shift Mode 7, R/W
This bit determines the shift method for all of the shift
instructions: SHFC, SHFI, MODA, MODB, MOVS, and
MOVSI. If S is cleared to zero, the shift instruction is an
arithmetic shift. If S is set to one, the shift instruction is a
logical shift.

Processor reset clears the shift mode bit to zero.

IM2 Interrupt 2 Mask 6, R/W
IM2 is the interrupt mask for the INT2 signal. Clearing
IM2 to zero disables INT2; setting IM2 to one enables
INT2. This bit is cleared to zero during processor reset.

Mn Modulo Enable [5:0], R/W
Setting an Mn bit to one enables modulo addressing for
the corresponding Rn register, as specified by the MOD

S Shift Instruction

0 Arithmetic Shift

1 Logical Shift
4-20 Registers

and STEP values in the relevant CFG register. Processor
reset clears the Mn bits.

Note: The MODR instruction is the only instruction that can use
one of the Rn registers without being affected by the
corresponding Mn bit. The MODR instruction has an
option that disables modulo operation. See Chapter 7,
“Instruction Set,” for more information.

4.5 User-Defined Registers

The CWDSP1650 supports four User-Defined Registers that enable
expansion of the core in off-core glue logic. The 16-bit User-Defined
Registers are part of the core register list, which means they can be
accessed by most of the CWDSP1650 instructions. The core does not
provide a direct mechanism to clear the user-defined registers after
reset.

Modulo
Enable Bit

Address
Register

M5 R5

M4 R4

M3 R3

M2 R2

M1 R1

M0 R0
User-Defined Registers 4-21

4-22 Registers

Chapter 5
Signals
This chapter describes the CWDSP1650 interfaces to logic external to
the core. It contains the following subsections:

♦ Section 5.1, “Logic Symbol”

♦ Section 5.2, “Bus Interface”

♦ Section 5.3, “Program Control Interface”

♦ Section 5.4, “Off-Core Data Memory Interface”

♦ Section 5.5, “User-Defined Register Interface”

♦ Section 5.6, “Emulation and Trace Buffer Interface”

♦ Section 5.7, “Processor Control Interface”

♦ Section 5.8, “ScanICE Control Interface”

♦ Section 5.9, “Clock Control Interface”

In the descriptions that follow, the verb assert means to drive TRUE or
active. The verb deassert means to drive FALSE or inactive.

5.1 Logic Symbol

Figure 5.1 shows the logic symbol for the CWDSP1650 DSP core.
5-1

Figure 5.1 CWDSP1650 Logic Symbol

IACK_INT0
IACK_INT1
IACK_INT2
IACK_NMI
INT0
INT1
INT2
IU0, IU1
NMI
OAK_INTMODE
OU0, OU1
MOVP_FLAG

EDB[15:0]

IDB[15:0]
IAB[15:0]

PREN
PWEN

RD_EXT_REG
SEL_EXT_REG_RD[1:0]
SEL_EXT_REG_WT[1:0]

BI
BLOCKLOOP

BTI_SERVICE

DVM
IACK_BIEmulation

Processor

Program

CWDSP1650

RST

Control

User-Defined

Clock

MEM_CFG[2:0]

XDB[15:0]
XAB[15:0]

XREN
XWEN

YDB[15:0]
YAB[15:0]

YREN
YWEN

BRANCHING

CLR_ISTAT

Control
Interface

Register
Interface

EXT_IN[15:0]
LD_EXT_REG

INVALID_PA
INT_SEEN

SEL_TRACE[1:0]

TRACE_UNWRITE
TRACE_WRITE

MVD_EXEC

TRACE_TAG

TRAP_SERVICE

and Trace
Buffer

Interface

SCAN_OUT
SCAN_WS

SCAN_EN
SCAN_IN

TEST

Control
Interface

WAIT_CTL

CORE_CLK
ICU_CLK
MCLK

ScanICE
Control
Interface

Interface

Bus
Interface

Off-Core
Data

Memory
Interface

RAM_RD
RAM_WT
5-2 Signals

5.2 Bus Interface

The EDB comprises the main bus for most data transactions.

EDB[15:0] External Data Bus Output
This unidirectional 16-bit data bus transfers data from the
internal core components (PCU, DAAU, and so on) to the
off-core components (YRAM, XRAM, PRAM, external
registers, etc.) EDB[15:0] is the external extension of the
Main Data Bus.

5.3 Program Control Interface

The following signals relate to program memory access.

IDB[15:0] Program Data Bus Input
This 16-bit bus transfers both program instructions and
program data to the core from the program memory.

IAB[15:0] Program Address Bus Output
The core drives this 16-bit bus with the memory address
of either the program instruction or the program data.

PREN Program Read Enable Output
The core drives this signal HIGH to request program
data. PREN remains active through the complete
program request cycle, including all wait cycles.

PWEN Program Write Enable Output
The core drives this signal HIGH to indicate either a
program word or a data word write to the program
memory space through the external data bus. PWEN
remains active through the complete program write cycle,
including all wait cycles.
Bus Interface 5-3

5.4 Off-Core Data Memory Interface

The following signals are used in data memory access.

MEM_CFG[2:0]
Memory Configuration Input
These signals determine memory mapping for the core
system. The memory configuration can range from an
equal mix of 32 Kword X-memory / 32 Kword Y-memory,
to a 63.75 Kword X-memory / 256 word Y-memory
distribution.

RAM_RD Memory Read Indicator Output
The core drives this signal HIGH to indicate that the
instruction about to be decoded will request a read from
either the X- or Y-memory data. When a data memory
read is in the critical path, RAM_RD can provide a
designer with early indication of a memory access.

RAM_WT Memory Write Indicator Output
The core drives this signal HIGH to indicate that the
instruction about to be decoded will request a write to
either the X- or Y-memory data. When a data memory
write is in the critical path, RAM_RD can provide a
designer with early indication of a memory access.

XDB[15:0] X-Memory Data Bus Input
This unidirectional 16-bit bus transfers data to the core
from the X-memory space.

MEM_CFG
[2:0] X-Memory Space Y-Memory Space

000 32 K (0x0000-0x7FFF) 32 K (0x8000-0xFFFF)

001 48 K (0x0000-0xBFFF) 16 K (0xC000-0xFFFF)

010 56 K (0x0000-0xDFFF) 8 K (0xE000-0xFFFF)

011 60 K (0x0000-0xEFFF) 4 K (0xF000-0xFFFF)

100 62 K (0x0000-0xF7FF) 2 K (0xF800-0xFFFF)

101 63 K (0x0000-0xFBFF) 1 K (0xFC00-0xFFFF)

110 63.5 K (0x0000-0xFDFF) 512 (0xFE00-0xFFFF)

111 63.75 K (0x0000-0xFEFF) 256 (0xFF00-0xFFFF)
5-4 Signals

XAB[15:0] X-Memory Address Bus Output
The core drives this 16-bit bus with the X-memory space
address. The available X-memory address range is
specified by the MEM_CFG[2:0] signals.

XREN X-Memory Read Enable Output
The core drives this signal HIGH to request data from the
X-memory address specified by the XAB signal. XREN
remains active throughout the complete X-memory
request cycle, including all wait cycles.

XWEN X-Memory Write Enable Output
The core drives this signal HIGH to indicate a X-memory
data write through the external data bus to the address
specified by XAB. XWEN remains active through the
complete X-memory write cycle, including all wait cycles.

YDB[15:0] Y-Memory Data Bus Input
This unidirectional 16-bit bus transfers data to the core
from the Y-memory space.

YAB[15:0] Y-Memory Address Bus Output
The core drives this 16-bit bus with the Y-memory
address. The available Y-memory address range is
specified by the MEM_CFG[2:0] signals.

YREN Y-Memory Read Enable Output
The core drives this signal HIGH to request Y-memory
data from the address specified by the YAB signal. YREN
remains active throughout the complete Y-memory read
cycle, including all wait cycles.

YWEN Y-Memory Write Enable Output
The core drives this signal HIGH to indicate a Y-memory
data write through the external data bus to the address
specified by YAB. YWEN remains active through the
complete Y-memory write cycle, including all wait cycles.
Off-Core Data Memory Interface 5-5

5.5 User-Defined Register Interface

The following signals are used when implementing the optional
user-defined registers.

EXT_IN[15:0]
External Registers Input Data Bus Input
This 16-bit bus transfers data from the user-defined
external registers to the core.

LD_EXT_REG
External Register Write Enable Output
The core drives this signal HIGH during an external
register write cycle.

RD_EXT_REG
External Register Read Enable Output
The core drives this signal HIGH during an external
register read cycle.

SEL_EXT_REG_RD[1:0]
Select External Register for Reading Output
The core drives these signals with the code of the
external register that is the source operand of the
external register read instruction.

SEL_EXT_REG_WT[1:0]
Select External Register for Writing Output
The core drives these signals with the code of the
external register that is the destination operand of the
external register write instruction.

SEL_EXT_REG_RD[1:0] External Register

00 0
01 1
10 2
11 3

SEL_EXT_REG_WT[1:0] External Register

00 0
01 1
10 2
11 3
5-6 Signals

5.6 Emulation and Trace Buffer Interface

The following signals are used in conjunction with the on-chip emulation
module (OCEM) to implement debug functionality. See Chapter 8, “On-
Chip Emulation Module (OCEM),” for further information on the OCEM.

BI Breakpoint Interrupt Input
Asserting this signal HIGH causes the core to service the
TRAP/BI interrupt service routine (vector address
0x0002.)

BLOCKLOOP Block-Repeat Detected Output
The core drives this signal HIGH whenever it detects a
jump back to the first instruction in a block-repeat loop.

BRANCHING Branch Detected Output
The core drives this signal HIGH whenever a branch-type
instruction occurs during program execution (see
Chapter 8, “On-Chip Emulation Module (OCEM),” for
further information).

BTI_SERVICE
BI/TRAP Service Active Output
The core asserts this signal HIGH to indicate the
execution of a TRAP/BI service routine. BTI_SERVICE
remains active from the decode of address 0x0002 until
the third cycle decode of either the RETID or RETI
instruction at the end of the service routine.

CLR_ISTAT Clear Interrupt Status Output
The core asserts this signal HIGH when it serves an
interrupt.

DVM Data Value Match Output
The core asserts this signal HIGH to indicate a match
between the data of the DVM register and the value of
EDB[15:0].

IACK_BI Breakpoint Interrupt Acknowledge Output
The core asserts this signal HIGH to acknowledge a
breakpoint interrupt.
Emulation and Trace Buffer Interface 5-7

INVALID_PA Invalid Program Address Output
The core asserts this signal HIGH whenever either an
invalid data read or data write occurs with the program
memory space.

INT_SEEN Interrupt Indication Output
The core asserts this signal HIGH when an interrupt is
pending, or if the core is in a noninterruptible state.

MVD_EXEC Move Data-to-Program Detected Output
The core asserts this signal HIGH after it executes a
MOVD instruction. This operation could corrupt the
program memory, so the OCEM monitors this condition.

SEL_TRACE[1:0]
Select Addresses for Trace Output
The core drives these signals with the program address
values selected to be written to the OCEM trace buffer.

TRACE_TAG Trace Address Tag Output
Asserting this signal HIGH indicates that the current
program address is one of two addresses stored for
certain nonsequential program flow operations. The core
stores the value of TRACE_TAG with the trace address
values in the trace buffer.

TRACE_UNWRITE
Unwrite Last Trace Address Output
The core drives this signal HIGH to unwrite the last trace
address from the trace buffer. An unwrite capability is
needed to erase a conditional branch trace buffer entry
when the branch is not taken.

TRACE_WRITE
Trace Write Output
The core drives this signal HIGH to indicate a data write
to the trace buffer.

TRAP_SERVICE
TRAP Service Indicator Output
The core drives this signal HIGH when a software trap
occurs.
5-8 Signals

5.7 Processor Control Interface

The following signals relate to program flow control, memory access
cycle definition and interrupts:

IACK_INT0 Maskable Interrupt 0 Acknowledge Output
The core drives this signal HIGH to acknowledge service
to maskable interrupt 0.

IACK_INT1 Maskable Interrupt 1 Acknowledge Output
The core drives this signal HIGH to acknowledge service
to maskable interrupt 1.

IACK_INT2 Maskable Interrupt 2 Acknowledge Output
The core drives this signal HIGH to acknowledge service
to maskable interrupt 2.

IACK_NMI Nonmaskable Interrupt Acknowledge Output
The core drives this signal HIGH to acknowledge service
to the nonmaskable interrupt.

INT0 Maskable Interrupt 0 Request Input
Asserting this signal HIGH through external logic
requests a core interrupt. This interrupt causes the core
to serve the INT0 interrupt service routine (vector
address 0x0006), and can be internally masked by
software. INT0 must be synchronized with the rising edge
of the main input clock.

INT1 Maskable Interrupt 1 Request Input
Asserting this signal HIGH through external logic
requests a core interrupt. This interrupt causes the core
to serve the INT1 interrupt service (vector address
0x000E), and can be internally masked by software. INT1
must be synchronized with the rising edge of the main
input clock.

INT2 Maskable Interrupt 2 Request Input
Asserting this signal HIGH through external logic
requests a core interrupt. This interrupt causes the core
to serve the INT2 interrupt service (vector address
0x0016), and can be internally masked by software. INT2
must be synchronized with the rising edge of the main
input clock.
Processor Control Interface 5-9

IU1, IU0 User Input Pins Input
These signals are discrete inputs to the core and can be
read by software as bits of Status Register 2.

MOVP_FLAG Privacy for the Program Code Output
The core asserts this signal HIGH whenever it executes
a MOVP instruction. An external memory controller can
protect the on-chip program from unauthorized external
reads by monitoring MOVP_FLAG. When MOVP_FLAG
is asserted, the external memory controller checks if the
access is authorized. If not, the controller disables that
transaction enable, thereby protecting the program
memory information.

NMI Nonmaskable Interrupt Request Input
Asserting this signal HIGH through external logic
requests a core interrupt. This interrupt causes the core
to serve the NMI service routine (vector address 0x0004),
and cannot be internally masked by software. NMI must
be synchronized with the rising edge of the main input
clock.

OAK_INTMODE
Interrupt Mode Input
This signal has been reserved for future enhancement.
During CWDSP1650 operation, hold the OAK_INTMODE
signal LOW at all times.

OU1, OU0 User Output Pins Output
These discrete control signals can be controlled by
software.

RST Core Reset Input
Asserting this signal HIGH resets the core.

5.8 ScanICE Control Interface

The following signals are used in CWDSP1650 systems which implement
the ScanICE debug system.

SCAN_EN Scan Enable Input
Asserting this signal HIGH configures internal registers
for a serial scan.
5-10 Signals

SCAN_IN Scan Chain Input Input
This signal connects directly to the test input of the first
flip-flop in the kernel scan chain.

SCAN_OUT Scan Chain Output Output
This signal connects directly to the output of the last flip-
flop in the kernel scan-chain.

SCAN_WS Scan Write Strobe Input
Asserting this signal HIGH disables memory write
enables from the core. Disabling memory writes protects
the contents of the off-core RAMs during the scan mode.

TEST Test Mode Input
When SCAN_EN is LOW, asserting TEST forces all
kernel registers to be load enabled, implementing a
capture function when in scan mode. Asserting TEST
also forces the multiplier input latches transparent so they
can be controlled when in scan mode. TEST should be
asserted whenever SCAN_EN is asserted.

5.9 Clock Control Interface

These signals regulate the CWDSP1650 core clocking system.

CORE_CLK Main Clock Output
Main clock that drives all CWDSP1650 modules, apart
from the ICU.

ICU_CLK Interrupt Control Unit Clock Output
This signal is the controlling clock for the ICU.

MCLK Main Input Clock Input
This clock is the main input clock.

WAIT_CTL Wait Request Input
Asserting this signal HIGH forces the core in a wait state
mode. While WAIT_CTL is asserted, the core clock
(CORE_CLK) is held LOW. Deasserting WAIT_CTL LOW
for one full clock cycle ends this wait state mode. The
core clock then begins generating clock pulses again at
the rising edge trigger and the core can resume the
current transaction.
Clock Control Interface 5-11

5-12 Signals

Chapter 6
Operation
This chapter contains waveforms that depict core signals during various
operations. These waveforms are intended to assist hardware designers
in understanding the inter-relations of the core signals and how
operations initiated on one interface propagate to others.

This chapter is further divided into the following sections:

♦ Section 6.1, “Reset”

♦ Section 6.2, “Boot Procedure”

♦ Section 6.3, “Interrupts”

♦ Section 6.4, “Memory Interface”

♦ Section 6.5, “User-Defined Register Interface”

♦ Section 6.6, “Program Protection Mechanism”

♦ Section 6.7, “Clock Control Unit (CCU)”

6.1 Reset

Reset is an external event used at any time to put the CWDSP1650 core
into a known state. Asserting the reset input (RST) HIGH places the core
into the reset state. The reset state causes the core to terminate all code
execution and initialize (clear) all registers and status bits. Deasserting
RST causes program execution to start from location 0x0000. Figure 6.1
shows a waveform for a reset operation.
6-1

Figure 6.1 Reset Operation

RST must be held asserted for at least six MCLK cycles. During reset,
the core drives the program address bus (IAB) with all zeros and
deasserts the program read enable (PREN). After the core deasserts
RST, it starts fetching instructions from program address 0x0000 on the
next rising edge of CORE_CLK. Since the CWDSP1650 CCU
synchronizes RST internally with MCLK, MCLK must not stop while RST
is asserted. For details on the effect of RST on specific registers, see the
descriptions in Chapter 4, “Registers.”

6.2 Boot Procedure

The boot procedure allows automatic code downloading from an external
device (for example, EPROM or RAM) to a RAM device located in the
program space. The boot procedure is not included in the CWDSP1650
core, but is implemented in the off-core Bus Interface Unit (BIU).

Boot support is transparent to the CWDSP1650 core. An off-core device
may force a branch instruction onto the program data bus (IDB) after
reset to direct the core to a boot routine. The core fetches this branch
instruction and executes it as if it was fetched from memory.
Subsequently, the core executes the boot routine to load the program
code to the program memory. A boot routine should end by jumping to
the program it downloaded.

As an example, an off-core Bus Interface Unit (BIU) on the CWDSP1650
Reference Device samples a BOOT pin during deassertion of RST. If this
off-core BOOT pin is valid, the BIU forces the instruction brr #-3 onto
the IDB through a multiplexor. This causes the next instruction to be

MCLK

CORE_CLK

RST

IAB[15:0]

PREN

At least 6 cycles

0x0000
6-2 Operation

fetched from address 0xFFFE, the location where the boot routine is held
in memory. Inside the boot routine, the instruction movd can be used to
download program code from a data memory (slow EPROM or ROM) to
a RAM device within the program space. Figure 6.2 illustrates how to
initiate the CWDSP1650 boot procedure.

Figure 6.2 Entering Boot Mode

6.3 Interrupts

The CWDSP1650 core supports six different interrupts to handle
exceptions:

♦ Three hardware maskable interrupts (INT0, INT1, INT2)

♦ One nonmaskable interrupt (NMI)

♦ Two breakpoint interrupts (software/hardware) in one signal
(BTI_SERVICE) for use with the OCEM

The core can either program the registers ST0 and ST2 or use the EINT
and DINT instructions to enable or disable maskable interrupts. An
off-core device can use any of the hardware interrupts to request
services from the core. A program can request system service using the
TRAP instruction.

After accepting an interrupt, the core suspends normal program
execution and calls a service routine to handle the exception. Each
service routine starts from an address, known as the interrupt vector,

BRR - 3

0x0000 1 0xFFFE 0xFFFF

CORE_CLK

BOOT

RST

IAB[15:0]

PREN

IDB[15:0]

Force onto IDB with external boot logic
Interrupts 6-3

dedicated to that specific interrupt. The TRAP/BI interrupts share the
same interrupt vector. The core acknowledges each hardware interrupt
using a dedicated acknowledgment signal while it services that interrupt.
After the exception has been handled, an interrupt service routine returns
control to the interrupted program, which resumes execution from the
suspended point of the program. Note that the BI/TRAP vector is used
by the on-chip emulation module (OCEM) when using either the CDI or
ScanICE debug.

The remainder of this section is further divided into the following
subsections:

♦ Section 6.3.1, “Maskable Interrupts”

♦ Section 6.3.2, “Nonmaskable Interrupt (NMI)”

♦ Section 6.3.3, “TRAP/BI Interrupts”

♦ Section 6.3.4, “Interrupt Protocol”

♦ Section 6.3.5, “Interrupt Priority”

♦ Section 6.3.6, “Context Switching”

♦ Section 6.3.7, “Interrupt Nesting”

♦ Section 6.3.8, “Interruptible State”

6.3.1 Maskable Interrupts

INT0, INT1, and INT2 are active HIGH maskable interrupts. The core
processes a maskable interrupt provided the following conditions are
true:

♦ CWDSP1650 is in an interruptible state

♦ NMI or BTI_SERVICE interrupts are not pending or currently being
serviced

♦ Interrupt enable bit (IE) in the ST0 register is set to one

♦ Corresponding interrupt mask bit (IMn) in the ST0 and ST2 registers
is set to one
6-4 Operation

Table 6.1 lists the bits and signals associated with the maskable
interrupts.

Each maskable interrupt is masked independently by clearing to zero
one of the mask bits IM0, IM1, or IM2. Clearing the IE bit in the ST0
register disables all maskable interrupts. Always use the instruction EINT
and DINT to manipulate the IE bit when enabling and disabling maskable
interrupts explicitly. When the core services a maskable interrupt, it
clears the IE bit to disable all other maskable interrupts. The interrupt
mask bits are unaffected. Pending maskable interrupts are serviced only
after the IE bit is set to one. The core acknowledges the pending
maskable interrupt through one of the IACK_INTn signals.

To return from a maskable interrupt service routine, one of the four
instructions RETI, RETID, RET, or RETD can be used. The instructions
RETI and RETID set the IE bit, allowing pending maskable interrupts to
be serviced. The RET and RETD instructions do not affect the IE bit.

Interrupt priority arbitrates between simultaneous maskable interrupts.
Among the maskable interrupts, INT0 has the highest priority and INT2
has the lowest. The priority between INT0, INT1, and INT2 is significant
only if more than one interrupt is received at the same time and the IE
bit is set to one. In these cases, the core services the interrupts
according to their priorities.

Nesting of maskable interrupts is supported only if enabled by the
service routine. When enabled, any maskable interrupt can interrupt the
service routine. Interrupt priority does not affect nesting of maskable
interrupts.

An NMI or TRAP/BI interrupt can always interrupt a maskable interrupt
service routine, regardless of the IE bit. The core sets the IP0, IP1, or

Table 6.1 Maskable Interrupt Bits and Signals

Interrupt
Signal

Interrupt
Acknowledge

Signal
Interrupt

Enable Bit
Interrupt
Mask Bit

Interrupt
Pending Bit

INT0 IACK_INT0 IE (ST0) IM0 (ST0) IP0 (ST2)

INT1 IACK_INT1 IE (ST0) IM1 (ST0) IP1 (ST2)

INT2 IACK_INT2 IE (ST0) IM2 (ST2) IP2 (ST2)
Interrupts 6-5

IP2 bit in ST2 register once the corresponding interrupt INT0, INT1, or
INT2 has been asserted, even when they are masked and/or disabled.
These bits can be used to poll the interrupt status.

6.3.2 Nonmaskable Interrupt (NMI)

NMI is a nonmaskable interrupt that cannot be masked or disabled under
software control. The core accepts NMI when it is in an interruptible state
and is not already servicing either an NMI or a TRAP/BI request. When
servicing an NMI, the core acknowledges the interrupt with the
IACK_NMI signal.

While the core is servicing an NMI, all incoming maskable interrupts are
held pending. Only a TRAP/BI request can interrupt an NMI service
routine. An NMI service routine must return with a RETI or RETID
instruction to clear the interrupt logic internal to the core. The IE bit in
status register ST0 is not affected by servicing an NMI interrupt.

6.3.3 TRAP/BI Interrupts

TRAP is a software interrupt and is the only interrupt that can be
activated directly by a software instruction. BI is a hardware breakpoint
interrupt that activates when the BI core input is asserted. The OCEM
uses the BI interrupt to provide emulation capability within the core. The
core handles the BI and TRAP interrupts almost identically and both
share the same interrupt vector. The core takes the following actions in
addition to the normal interrupt protocol when servicing a BI/TRAP
interrupt:

♦ The program counter is stored into the Data Value Match Register
(PC → DVM.)

♦ The core asserts the Trap/BI Active Indicator (BTI_SERVICE) HIGH
throughout the service routine.

♦ For TRAP interrupt, the core asserts the Software Trap Indicator
(TRAP_SERVICE) HIGH throughout the service routine to indicate
that a software trap occurred.

The core cannot disable or mask a TRAP/BI interrupt under software
control. It always services a requested TRAP/BI interrupt when it is in an
interruptible state and is not already servicing this interrupt. While the
6-6 Operation

core is executing the TRAP/BI service routine, it disables servicing of all
other hardware interrupts (NMI, INT0, INT1, and INT2).

Nesting of BI/TRAP interrupts is not allowed; it is illegal to use a TRAP
instruction in a TRAP/BI service routine. A TRAP/BI service routine must
end with an RETI or RETID instruction to clear the interrupt logic internal
to the core. The IE bit in status register ST0 is not affected by servicing
a TRAP/BI interrupt.

The TRAP_SERVICE output signal differentiates between a TRAP
(asserted HIGH) or a BI (deasserted LOW) interrupt. If required, a
service routine can differentiate between a TRAP and a BI interrupt only
with the assistance of external glue logic that latches the signal. For
more information on the TRAP or BI service see the Section 8.3, “OCEM
Signals.”

6.3.4 Interrupt Protocol

The CWDSP1650 defines an interrupt protocol to avoid race hazards due
to the asynchronous nature of external interrupts. Figure 6.3 illustrates
this interrupt protocol.

Figure 6.3 Interrupt Protocol

The core registers interrupts internally on the rising edge of ICU_CLK.
The maskable interrupts (INT0, INT1, and INT2) are registered even
when disabled, but are not registered when masked. See Section 6.3.1,
“Maskable Interrupts,” for further details of masking and disabling the
maskable interrupts. A registered interrupt is cleared only when the core
services the interrupt or during a core reset.

ICU_CLK

INTn1

CLR_ISTAT

IACKn2

IAB Return Addr IVEC

1. INTn can be INT2, INT1, INT0, NMI, or BI.
2. IACKn can be IACK, INT2, IACK_INT1, IACK_INT0, IACK_NMI or IACK_BI.
Interrupts 6-7

An on-core priority encoder selects the highest priority interrupt to be
serviced when multiple interrupts simultaneously arrive. A lower priority
interrupt is kept pending and is serviced only when all higher priority
interrupts have been serviced. See Section 6.3.5, “Interrupt Priority,” for
more information about interrupt priority servicing.

When the core is in an interruptible state, it starts servicing the highest
priority registered interrupt at the start of an instruction decode cycle
(see Section 6.3.8, “Interruptible State,” for further details). Instead of
decoding the prefetched instruction, the core passes a pseudo-
instruction to the instruction decoder to direct the core to the appropriate
service routine. As shown in Figure 6.3, the core performs the following
operations on the decode cycle of the pseudo-instruction:

♦ The vector address of the interrupt being serviced is forced onto IAB
to initiate prefetching of the first instruction in the corresponding
service routine (IVEC → IAB.)

♦ Assert CLR_ISTAT for one cycle to clear the internal finite state
machine inside the core (CLR_ISTAT HIGH.)

♦ Complete execution of the instruction already decoded and in the
operand fetch stage of the processor pipeline.

♦ Save the return address by pushing the address of the last
prefetched instruction onto the system software stack (PC → (SP),
then SP - 1 → SP.)

During the execution cycle of the interrupt pseudo-instruction, the core
asserts the corresponding acknowledgment signal (IACKn). IACKn clears
only after the corresponding interrupt is deasserted. Hence, a hardware
interrupt signal should be held until the core acknowledges it (IACKn
HIGH.)

Note: When servicing a hardware interrupt, the core clears its
internal interrupt logic only when the interrupt is
deasserted. To comply with the interrupt protocol, a
hardware interrupt request should be held asserted until
the core acknowledges it. After that, the request must be
deasserted before another request is raised on the same
interrupt input. Otherwise, the core ignores this constantly
asserted interrupt after servicing it once.
6-8 Operation

6.3.5 Interrupt Priority

The CWDSP1650 core prioritizes interrupts when more than one
interrupt request is simultaneously raised. Table 6.2 lists all the interrupts
supported by the core in the descending order of their priorities. Their
vector addresses and acknowledgment signals are also listed in the
table.

The core services the highest priority interrupt it registered while the
others are held pending. The core services an interrupt only when no
higher priority interrupt needs attention. A higher priority interrupt that
arrives late is serviced first even if a lower priority interrupt has already
been held pending but not yet serviced.

6.3.6 Context Switching

When servicing an interrupt, the service routine has to save the contents
of any registers it uses before writing to them. Before returning, the
service routine should restore these registers with the saved values so
that the interrupted program can resume in the correct context. To reduce
the overhead involved, the CWDSP1650 supports automatic context
switching for the NMI and INTn interrupts. Automatic context switching
on an interrupt is enabled by setting the NMIC and ICn bits in the ICR
register. See Section 4.3.2, “Internal Configuration Register (ICR),” for
more information. When enabled, the core performs the following
operations automatically with zero overhead before executing the
interrupt service routine:

Table 6.2 Interrupts and Priorities

Interrupt Acknowledge Vector Priority

TRAP/BI IACK_BI 0x0002 1

NMI IACK_NMI 0x0004 2

INT0 IACK_INT0 0x0006 3

INT1 IACK_INT1 0x000E 4

INT2 IACK_INT2 0x0016 5
Interrupts 6-9

♦ Push ST0[0], ST0[11:2], ST1[11:10], and ST2[7:0] to their shadow
registers. The saved status register bits preserve the interrupted
program status.

♦ Swap the PAGE bits of the ST1 register with its shadow register. The
swapped PAGE bits allow a service routine to have instant access to
a data memory page reserved for interrupt servicing.

♦ Swap the A1 and B1 accumulators. This makes it convenient to
reserve B1 for interrupt servicing.

Automatic restoration of the switched context can be performed when
returning from the interrupt service routine using the RETI instruction. An
interrupt service routine has to explicitly save and restore any register it
uses not preserved by the above operations. The context switching
mechanism can also be activated by executing the CNTX instruction. The
shadow PAGE bits are not directly accessible by software, but have to be
explicitly selected with the CNTX instruction. See Section 4.1.3,
“Interrupt Context Switching Registers,” for more information about
context switching.

BANKE is another useful instruction for context saving and restoration. It
can swap up to four of the following pairs of registers in one cycle:

♦ R0↔R0B

♦ R1↔R1B

♦ R4↔R4B

♦ CFGI↔CFGIB

For more detailed information about the RETI, CNTX, or BANKE
instructions, see Chapter 7, “Instruction Set.”

6.3.7 Interrupt Nesting

The CWDSP1650 also supports interrupt nesting. In general, an interrupt
service routine can be interrupted only by a higher priority interrupt. The
lower priority interrupt service routine resumes execution after the higher
priority interrupt has been serviced. When servicing a maskable interrupt
(INTn), the core clears the IE bit in status register ST0 to disable
servicing any further maskable interrupts. A RETI or RETID instruction
at the end of a maskable interrupt service routine sets the IE bit to
re-enable the maskable interrupts. Nesting maskable interrupts can be
6-10 Operation

enabled inside a maskable interrupt service using the EINT instruction to
explicitly set the IE bit to one. When the IE bit is set, a maskable interrupt
can interrupt any maskable interrupt service routine. The relative
priorities of the maskable interrupts do not affect the nesting of any
maskable interrupts.

6.3.8 Interruptible State

While the core is in a noninterruptible state, it will not service any of the
interrupts, regardless of their priority. All interrupts received while the
core is in a noninterruptible state are held pending. The core is in a
noninterruptible state during:

♦ Multicycle instruction executions

♦ Wait states

♦ A nested repeat loop execution

During reset, the core ignores any interrupt. If an interrupt is asserted
when RST deasserts, the core services the interrupt after prefetching
from location 0x0000.

The core also becomes noninterruptible temporarily after executing some
instructions. These cause a delay in servicing an interrupt. Table 6.3
describes all cases in which interrupts are delayed due to a specific
instruction execution. The second column lists the interrupt delays in
machine cycles (CORE_CLK cycles). CORE_CLK can stretch to
multiple-cycles in case of wait states (it stretches until the end of the wait
interval.)
Interrupts 6-11

6.4 Memory Interface

The CWDSP1650 Harvard architecture separates program memory and
data memory spaces. The core further divides the data memory into two
separate spaces, X and Y, to increase memory bandwidth. Table 6.4
shows how the core input MEM_CFG[2:0] signals define partitioning of
the total 64 Kwords of data memory space into the X- and Y-data spaces.

Table 6.3 Interrupt Latency after Specific Instructions

Current Instruction

Interrupt Delay
after the

Instruction Interrupt 1

1. INTn = INT0, INT1, INT2.
2. soperand represents every source operand except for a ##long immediate

First repetition of instruction during a repeat loop after returning
from an interrupt

One cycle INTn, NMI

Enabling or unmasking interrupts with the following instructions:
mov soperand, st0
movp (aXl), st0
set/rst/chng/addv/subv/mov ##long immediate, st0
pop st0

One cycle INT0, INT1

Unmasking interrupt with the following
instructions: mov soperand, st2
movp (aXl), st2
set/rst/chng/addv/subv/mov ##long immediate, st2
pop st2

One cycle INT2

retd, retid, mov soperand, pc
movp (aXl), pc

Two cycles INTn, NMI, BI

mov ##long immediate, pc One cycle INTn, NMI, BI
6-12 Operation

The memory interface of the CWDSP1650 allows a flexible selection of
memory devices. Only single-port memory is required, although dual or
multiport memory can also be supported. There is no restriction on any
sequence of read and write transactions on any of the memory spaces.

The core has a single output bus but separate input buses and address
buses for each memory space. All memory buses are 16-bits wide.

The external data bus (EDB) is the single output bus to all off-core
devices including data memory, program memory and user-defined
registers (see Section 6.5, “User-Defined Register Interface,” for more
information.) The core indicates which device it is writing to by using
dedicated write-enable signals.

The core has three separate memory data input buses. The X-data bus
(XDB) receives input from the X-data space, the Y-data bus (YDB)
receives input from the Y-data space and the instruction data bus (IDB)
receives data and instructions from the program memory. The core uses
dedicated read-enable signals to control which memory space or
external register is read from.

The core also has a separate address bus for each memory space. The
X-address bus (XAB) and Y-address bus (YAB) output addresses for the
X- and Y-data spaces respectively. The program address bus (IAB)
outputs program memory addresses.

Table 6.4 Data Memory Space Partitioning

MEM_CFG[2:0]
X-Memory Size
(16-Bit Words)

Y-Memory Size
(16-Bit Words)

000 32 K 32 K

001 48 K 16 K

010 56 K 8 K

011 60 K 4 K

100 62 K 2 K

101 63 K 1 K

110 63.5 K 512

111 63.75 K 256
Memory Interface 6-13

Table 6.5 summaries the memory interface signals of the CWDSP1650.

For more information about program and data memory, see Chapter 3,
“Data Formats, Memory and Addressing.” For program and data memory
timing diagrams, see Chapter 10, “Specifications.”

6.4.1 Memory Interface with Slow Memory Devices

The core supports transactions with slow memory devices (in either
program or data memory space) through a built-in wait state mechanism.
The Clock Control Unit (CCU) suspends CORE_CLK to put the
CWDSP1650 into a wait state when the core input WAIT_CTL is
asserted HIGH on the rising edge of MCLK. The core remains in the wait
state until the rising edge of MCLK after WAIT_CTL is deasserted. This
extends the machine cycle time to match the memory access time.
During wait stated cycles most parts of the core are effectively put on
hold. The Interrupt Control Unit (ICU) and the CCU are not clocked by
CORE_CLK and so are not affected. All output signals on the memory
interfaces are kept stable throughout the wait states.

Note that for every machine cycle, the core can fetch from several
off-core devices concurrently. These include program memory, X-data
memory, Y-data memory and the user-defined registers. A wait state
request must insert enough wait states to allow enough time for the
slowest accessed device.

For example, suppose that the program space is composed of a fast
memory device (zero wait states) and a slow memory device (three wait
states). The data space is composed of a fast memory device (zero wait
states) and a slow device (four wait states). For this example, Table 6.6
summarizes the wait interval for four cases in which the program and
data memories are fetched simultaneously.

Table 6.5 Memory Signals Interface

Memory
Space

Output
Bus

Input
Bus

Address
Bus

Write
Control

Read
Control

X data EDB XDB XAB XWEN XREN

Y data EDB YDB YAB YWEN YREN

Program EDB IDB IAB PWEN PREN
6-14 Operation

For more information about wait state timing and diagrams, see
Chapter 10, “Specifications.”

6.5 User-Defined Register Interface

The CWDSP1650 core architecture supports up to four user-defined
registers. These user-defined registers enable expansion of the core in
off-core logic. These 16-bit user-defined registers are considered part of
the core register list and can be accessed directly by most CWDSP1650
instructions.

The core reads and writes the user-defined registers using a dedicated
interface. When writing to user-defined registers, the core asserts the
output signal LD_EXT_REG and specifies the destination with the 2-bit
output SEL_EXT_REG_WT. The core outputs the data to the defined
registers through the EDB bus. When reading from the user-defined
registers, the core asserts the output signal RD_EXT_REG and specifies
the source with the 2-bit output SEL_EXT_REG_RD. The core reads the
data through the EXT_IN[15:0] bus.

Table 6.6 Example for Defining the Number of Wait Cycles

Transaction Type
Wait Interval

(Cycles)

Program Fast (0 cycles) with Data Fast (0 cycles) 0

Program Slow (3 cycles) with Data Fast (0 cycles) 3

Program Fast (0 cycles) with Data Slow (4 cycles) 4

Program Slow (3 cycles) with Data Slow (4 cycles) 4
User-Defined Register Interface 6-15

Table 6.7 shows the code (either on SEL_EXT_REG_WT or
SEL_EXT_REG_RD) associated with each user-defined register.

The user-defined register transactions can have wait states as in the
memory transactions. Once a wait state occurs (WAIT_CTL is asserted),
the user-defined register interface is held valid throughout the extended
access cycle. If a design has a destructive read or a destructive write,
where the read or the write operation causes an internal mechanism to
be initiated, the read or write must be blocked appropriately by using
WAIT_CTL. Otherwise, multiple read/write triggers during the wait
interval may cause register data to be lost or corrupted.

For more information about user-defined register timing and diagrams,
see Chapter 10, “Specifications.”

6.6 Program Protection Mechanism

The program protection mechanism protects the user program from
unauthorized reading. It prevents infringement on intellectual property
rights by reverse engineering of the program code held in on-chip
memory.

The CWDSP1650 core supports program protection by asserting the
MOVP_FLAG signal when executing a movp instruction. The movp
instruction is the only instruction that can read from the program memory
space and write the data obtained to the data memory space. An off-core
device, typically a BIU, can use MOVP_FLAG to gate the program
memory read-enable signal. The protection logic detects any
unauthorized reads and prevents the program memory from being read.

Table 6.7 User-Defined Register Coding

User-Defined Register Code

ext0 00

ext1 01

ext2 10

ext3 11
6-16 Operation

Figure 6.4 shows how to protect the lower 32 Kwords of the program
space in an application which maps this space to on-chip ROM.

Figure 6.4 Memory Protection Mechanism

Off-chip memory mapped to the upper 32 Kwords of program space can
be modified to insert a routine that copies on-chip program code to
another off-chip data memory. This can help where effective access
control is difficult, if not impossible. To prevent such an intrusion, a BIU
can detect the execution of a movp instruction fetched from off-chip
memory using the MOVP_FLAG and IAB[15]. When detected, the BIU
stops the core PREN signal from reaching the CWDSP1650 reference
device output-enable (OE) pin of the on-chip program memory.

6.7 Clock Control Unit (CCU)

The CWDSP1650 Clock Control Unit (CCU) is a module external to the
core, available as an optimized hard-macro. The CCU provides flexible

MOVP

CORE_CLK

IAB[15:0]

IDB

PREN

MOVP_FLAG

OE
Clock Control Unit (CCU) 6-17

control of the clock speed and sources for the core and surrounding
peripherals. Table 6.8 lists the CCU output clocks.

6.7.1 CCU Operation

The CCU derives its output clocks from either the MASTER clock or
SCAN_CLK (the ScanICE interface generates START_SCAN after a
breakpoint in ScanICE mode.) A clock control register provides software
or system control over the clocks generated by the CCU. By writing
appropriate values to the clock control register, the frequency of the
clocks can be varied, the clocks can be stopped pending a restart by an
interrupt, or SCAN_CLK can be selected. See Section 6.7.2, “CCU
Register,” for more information.

Wait states are controlled using the WAIT_CTL signal. When WAIT_CTL
is asserted HIGH, it suppresses the rising edge of CORE_CLK.
CORE_CLK stays LOW until the WAIT_CTL signal is deasserted, after
which CORE_CLK follows the rising edge of ICU_CLK. CORE_CLK also
restarts when the core receives any unmasked interrupt. The restarted

Table 6.8 CCU Output Clocks

Clock Description
Aligned
Clocks

Wait
States

Stop
Mode

CORE_CLK In normal mode, this clock is a division of
MASTER clock. In scan mode, it switches
to SCAN_CLK.

– Yes Yes

ICU_CLK The ICU registers interrupts using this
clock. ICU_CLK is a skewed version of
CORE_CLK.

– No No

OCEM_CLK A copy of CORE_CLK. This is the
reference clock for the OCEM.

CORE_CLK Yes Yes

PMEM_CLK A copy of CORE_CLK that is skewed opti-
mally for clocking synchronous program
memory.

– Yes Yes

DMEM_CLK A copy of CORE_CLK skewed optimally for
clocking synchronous data memory.
DMEM_CLK is only active during a data
memory access. DMEM_CLK skew is pro-
grammed through the SKEW bits in the
CCU Register.

– Yes Yes
6-18 Operation

CORE_CLK frequency depends upon the restore value programmed into
the CCU register.

Setting the CCU register STOP bit to one initiates the clock stop mode.
In stop mode, the CORE_CLK signal is stopped, but ICU_CLK continues
to run. When programming the CCU to enter stop mode, the interrupts
must be disabled and re-enabled around the instruction that sets the
STOP bit in the CCU register using DINT and EINT instructions. Three
NOP instructions should also be placed following the EINT instruction,
for example:

mov ##0xf7e5, r0 ; Set up CCU reg addr in r0
dint ; Disable interrupts
chng ##0x0010, (r0) ; Set STOP bit to one
eint ; Enable interrupts
nop
nop
nop

6.7.2 CCU Register

Figure 6.5 shows the CCU register and bit fields.

Figure 6.5 CCU Register

SKEW Data Memory Clock Skew Bits [15:9], R/W
The SKEW bits set the skew for DMEM_CLK. These bits
should not normally be adjusted during operation since
they directly affect memory access interface timings. The
following table lists the skew values available through the
SKEW bits.

15 9 8 5 4 3 0

SKEW RSV STOP SELECT

SKEW bits Read Access (ns) Write Access (ns)

1000 2.00 6.50
1001 2.25 6.25
1010 2.50 6.50
1011 2.65 6.65
1100 2.80 6.80
1110 3.10 7.10
1111 3.25 7.25
00001 3.40 7.40
Clock Control Unit (CCU) 6-19

RSV Restore Value [8:5], R/W
When the STOP bit clears to zero, the CCU transfers the
RSV value into the SELECT bits of the clock control
register. This allows the core to be put into a low-power
idle state with the ICU sampling interrupts at the selected
slow clock rate. When the core receives an interrupt, it
restarts at the clock rate determined by RSV and then
responds to the interrupt.

STOP Stop Scan Bit 4, R/W
The CCU enters stop mode when this bit is set to one. In
the stop mode CORE_CLK is stopped, but ICU_CLK
clocks are still running. This allows the ICU to remain
functional while the core is effectively stopped. Any
interrupt allowed through the ICU clears the STOP bit
and restarts the CORE_CLK.

SELECT Select Clock Division [3:0], R/W
This four-bit value selects which division of the MASTER
clock generates the output clocks. The MASTER clock is
divided by 2(SELECT), so the output clock can be equal to
MASTER when select is 0x0, or divided by 16384 when
select is 0xE. When select is 0xF, SCAN_CLOCK is
selected (this selection is reserved for use by the debug

0001 3.55 7.55
0010 3.70 7.70
0011 3.85 7.85

0100 4.00 8.00
0101 4.25 8.25
0110 4.50 8.50
0111 5.00 9.00

1. Value after reset.

SKEW bits Read Access (ns) Write Access (ns)
6-20 Operation

system and should not be directly used in application
software).

SELECT Value Output Clock

0x0 MASTER
0x1 MASTER / 2
0x2 MASTER / 4

.

.

.

.

.

.
0xE MASTER / 16384
0xF SCAN_CLK
Clock Control Unit (CCU) 6-21

6-22 Operation

Chapter 7
Instruction Set
This chapter describes the core instruction set, contains a complete
alphabetical listing of all instructions, and is composed of the following
sections:

♦ Section 7.1, “Notations”

♦ Section 7.2, “Conventions and General Information”

♦ Section 7.3, “Instruction Functional Groups”

♦ Section 7.4, “Instruction Set List”

♦ Section 7.5, “Instruction Opcode Bit Coding”

7.1 Notations

This section defines the special symbols and notations used throughout
this chapter. The areas with special notations include registers, numbers,
data and program operands, and flags.

7.1.1 Register Notations

Table 7.1 defines the notations used to describe the core registers.

Table 7.1 Register Notations

Notations Register

rN Address registers: r0, r1, r2, r3, r4, r5

rI Address registers: r0, r1, r2, r3

rJ Address registers: r4, r5

(Sheet 1 of 2)
7-1

aX a0 or a1

aXl a-accumulator-low (LSP), x = 0, 1

aXh a-accumulator-high (MSP), x = 0, 1

aXe a-accumulator extension, x = 0, 1

bX b0 or b1

bXl b-accumulator-low (LSP), x = 0, 1

bXh b-accumulator-high (MSP), x = 0, 1

ac a0, a1, a0h, a1h, a0l, a1l

bc b0, b1, b0h, b1h, b0l, b1l

ab a0, a1, b0, b1

cfgX Configuration registers of DAAU (MODI or MODJ, STEPI or
STEPJ), x = i, j

sv Shift Value register

sp Stack Pointer

pc Program counter

lc Loop counter (of block repeat)

extX External registers, x = 0, 1, 2, 3 (user definable registers)

REG a0, a1, a0h, a1h, a0l, a1l, b0, b1, b0h, b1h, b0l, b1l, r0, r1, r2, r3,
r4, r5, rb, y, p, ph, sv, sp, pc, lc, st0, st1, st2, cfgi, cfgj, ext0, ext1,
ext2, ext3

x x (multiplier input) register

mixp Minimum/maximum pointer

icr Internal Configuration Register

repc Repeat Counter

dvm Data Value Match register

Table 7.1 Register Notations (Cont.)

Notations Register

(Sheet 2 of 2)
7-2 Instruction Set

7.1.2 Number Representation

Binary numbers are initiated with either “0b” or “0B.” Hexadecimal
numbers are initiated with either “0x” or “0X.”

7.1.3 Data and Program Operands

Table 7.2 and Table 7.3 list the following information for the program and
the data operands:

♦ Number of bits

♦ Operand range including the assembler mnemonics

♦ An operand example

Note that negative numbers can be written as four hexadecimal digits.
For example, -0x80 can be written as 0xFF80, and -0x20 can be written
as 0xFFE0.

Table 7.2 Program Operand Notation

Operand Number of bits

Assembler Syntax

ExampleDecimal Hexadecimal Binary

direct address unsigned 8 bits
(offset in page)

0–255 0x0–0xFF 0b0000000–
0b11111111

add 120, a1

[##direct address] unsigned 16 bits 0–65535 0x0–0xFFFF 0b0–
0b1111111111

sub [##var1], a0

address unsigned 16 bits 0–65535 0x0–0xFFFF 0b0–
0b1111111111

call 0x5000
Notations 7-3

Table 7.3 Data Operand Notation

Operand
Number of
bits

Assembler Syntax

ExampleDecimal Hexadecimal Binary

signed
short
immediate

8 (2’s
complement)

-128–127 # -0x80–0x7F # -0b1000.0000
–0b0111.1111

mov #-12, r0

signed 6 bit
immediate

16 (2’s
complement)

-32–31 # -0x20–0x1F # -0b100000–
0b011111

shfi b0, a0, #-4

signed 5 bit
immediate

5 (2’s
complement)

-16–15 # -0x10–0xF # -0b10000–
0b01111

movsi r1, a0, #3

unsigned
9 bit
immediate

9 (unsigned) # 0–511 # 0x0–0x1FF # 0b0000000–
0b1111.11111

load #270, modi

unsigned
short
immediate

8 (unsigned) # 0–255 # 0x0–0xFF # 0b0000000–
0b11111111

add #0b10, a0

unsigned
7 bit
immediate

7 (unsigned) # 0–127 # 0x0–0x7F # 0b0000000–
0b01111111

load #3, stepj

unsigned
5 bit
immediate

5 (unsigned) # 0–31 # 0x0–0x1F # 0b00000–
0b011111

mov #0x5, icr

unsigned
2 bit
immediate

2 (unsigned) # 0–3 # 0x0–0x3 # 0b00–0b11 load #0b11, ps

bit number 4 (unsigned) # 0–15 # 0x0–0xF # 0b0000–
0b01111

tstb r0, #12

long
immediate

16 (2’s
complement)

-32768–
32767

-0x8000–
0x7FFF

-0b100000–
0b01111111

mov ##
-0x9000, a0

offset 16 (unsigned) ## 0–65535 ## 0x0–
0xFFFF

0b0–
0b1111111111

mov ## 0xF000,
r0

offset7 7 (2’s
complement)

-64–63 -0x40–0x3F -0b1000000–
0b0111111

add (rb-5), a1
7-4 Instruction Set

7.1.4 Option Fields

The option fields contain the notations listed in Table 7.4.

7.1.5 Condition Field (cond) Notations

Table 7.5 shows the notations for the condition field.

Table 7.4 Option Field Notations

Notations Description

eu Extension unaffected. This field is optional in the mov direct
address, axh, [eu] instruction. When eu is mentioned, the data
is transferred into aXh without affecting aXe. When eu is not men-
tioned, the data is transferred into aXh with sign-extension into aXe.

context Context switching. This field is optional in the reti instruction.
When context is used, automatic context switching occurs. When
context is not used, there is no context switching.

dmod Disable modulo. This field is optional in the modr instruction. When
dmod is mentioned, the rN is postmodified with modulo modifier
disabled. When not mentioned, the Mn bit influences the
postmodification of rN.

Table 7.5 Condition Field Notations

Mnemonics Description Condition

true Always –

eq Equal to zero Z = 1

neq Not equal to zero Z = 0

gt Greater than zero M = 0 ∩Z = 0

ge Greater or equal to zero M = 0

lt Less than zero M = 1

le Less or equal to zero M = 1 ∪ Z = 1

nn Normalize flag is cleared N = 0

v Overflow flag is set V = 1

c Carry flag is set C = 1

(Sheet 1 of 2)
Notations 7-5

7.1.6 Flag Notations

The eight flags are found in Status Register 0. There are eight flags: Z,
M, N, V, C, E, L, and R. The flags are depicted as shown below.

Flags that are affected by the specific instruction are shaded. Flags that
are not affected are not shaded. For full definitions and descriptions of
the flag bits, see Section 4.4.1, “Status Register 0 (ST0).”

7.1.7 Miscellaneous Notations

Table 7.6 lists all other notations.

e Extension flag is set E = 1

l Limit flag is set L = 1

nr R flag is cleared R = 0

niu0 Input user pin 0, IUSER0, is cleared –

iu0 Input user pin 0, IUSER0, is set –

iu1 Input user pin 1, IUSER1, is set –

Table 7.5 Condition Field Notations (Cont.)

Mnemonics Description Condition

(Sheet 2 of 2)

15 12 11 10 9 8 7 6 5 4 3 2 1 0

Status Register 0 A0E Z M N V C E L R IM1 IM0 IE SAT

Table 7.6 Miscellaneous Notations

Notation Description

(x) The contents of x

| One of the options should be included

[] Optional field at the instruction

<x> Specific notes

(Sheet 1 of 2)
7-6 Instruction Set

7.2 Conventions and General Information

The conventions used through the instruction set are:

1. The arithmetic operations are performed in two’s complement.

2. The following instructions allow postmodification of the rN registers:

– instructions that use indirect addressing mode

– MODR

– NORM

– MAX, MAXD, MIN (use r0 only)

In these instructions, the contents of the rN register are postmodified
through the following:

– Instruction-Controlled Options

– rN, rN + 1, rN – 1, rN + step

– Configuration Register (CFGI or CFGJ) Controlled Options

Step size: STEPI, STEPJ - 2’s complement 7 bits (-64 to 63)
Modulo size: MODI, MODJ - unsigned 9 bits (1 to 512)

-> Is assigned to

>> Shift right

<< Shift left

exp(x) Exponent of x

_ Not

» Or

« And

Table 7.6 Miscellaneous Notations (Cont.)

Notation Description

(Sheet 2 of 2)
Conventions and General Information 7-7

– Status Register ST2 Controlled Options

For each rN register, it should be defined if MODULO is enabled
or disabled.

When using MODI or MODJ, the relative Mn bit must be set. The
only exception is with the MODR instruction, which has an
optional field for disabling the modulo.

For more details on the modulo arithmetic unit, see the
subsection entitled “Modulo Modification” on page 2-21.

Whenever the operand field in the instruction is (rN), the rN can be
postmodified in one of the following four options.

Assembler syntax: (rN), (rN)+, (rN)-, (rN) + s

Four examples of instructions with postmodified rNs are:
mov (r0)-, r1
mac (r4)+, (r0)+s, a0
add (r2), a1
modr (r5)-

3. The direct addressing mode assembler syntax is as follows:

– The syntax when a one-word instruction is used is either direct
address or [direct address]. (This instruction uses the contents
of the PAGE bits.)

– The syntax when a two-word instruction is used—even if the
address is an eight-bit value—is [## direct address].

4. The 16 most-significant bits of the P register (denoted as PH) are
write only. The 32-bit P register is updated after a multiply operation.
The only way to read the P register is to transfer its contents into the
Ax accumulators or set the P register as an operand for an arithmetic
and logic operation. The contents of the P register are sign-extended
to 36 bits when transferred into the accumulator. This method allows
you to store and restore the P register.

5. The P register is used as a source operand for different instructions
as follows:

– as one of the REG registers,

– in a moda instruction—pacr function,

– in multiply instructions where the P register is added or
subtracted from one of the accumulators.
7-8 Instruction Set

When the P register is used as a source operand, it is referred to as
the “shifted P register.” Shifted P register means that the P register
is sign-extended into 36 bits and then shifted as defined by the PS
field in Status register ST1. In a right shift, the sign is extended;
whereas in a left shift, a zero is appended to the LSB. The contents
of the P register remain unchanged. In two multiply instructions, maa
and maasu, the P register is also aligned. In other words, after the P
register is sign-extended and shifted according to the PS field, it is
also shifted 16 bits to the right.

6. Move instructions that use the accumulator (aX or bX) as a
destination are sign extended. Instructions that specify the
accumulator-low (aXl or bXl) as a destination clear the accumulator-
high and the accumulator-extension. Therefore, these instructions
are sign-extension suppressed.

All instructions using the accumulator-high (aXh or bXh) as a
destination clear the accumulator-low. These instructions are sign
extended. An exception is:

mov direct address, axh, [eu] .

When the eu option is used, data is moved into accumulator-high
without sign extension (the accumulator-extension aXe is unaffected).

7. In all arithmetic operations between 16-bit registers and aX (36 bits),
the 16-bit register is regarded as the 16 low-order bits of a 36-bit
operand with a sign extension in the most-significant bits.

8. The condition field is almost always an optional field, except when it
is followed by another optional field, as in the reti instruction. When
the condition field is the last field of the instruction and the condition
is omitted, the condition defaults to true. For example, shr4 true is
the same as shr4 . In the instruction reti true, context , the
‘true’ cannot be omitted.

9. Arithmetic and logical operations (not bit manipulation operations)
using the same accumulator as the source (soperand) and the
destination (doperand) are not permitted. For example, add a0, a0
is not invalid but shfc a0, a0 is.

10. An instruction that immediately follows another which has modified
the rb register may not use the index addressing mode. The only
exception is when rb is modified using a long immediate operand
(mov ##long immediate, rb).
Conventions and General Information 7-9

11. All commands that use pc as a destination register must be followed
with two nop instructions. The only exception to this statement is the
mov ##long immediate, pc instruction, where only one nop is
required.

7.3 Instruction Functional Groups

This section contains an overview of all core instructions, and provides
additional information on selected groups of instructions. Table 7.7
contains a comprehensive list of all the CWDSP1650 instructions,
grouped by function, and the page number where information about each
instruction can be found.

Table 7.7 CWDSP1650 Instruction Set Listing

Function Operation Description Page

Arithmetic and
Logical
Instructions

ADD Add 7-18

SUB Subtract 7-180

OR Logical OR 7-137

AND Logical AND 7-28

XOR Logical Exclusive OR 7-200

CMP Compare 7-48

ADDL Add to Low Accumulator 7-23

SUBL Subtract from Low Accumulator 7-185

ADDH Add to High Accumulator 7-21

SUBH Subtract from High Accumulator 7-183

CMPU Compare Unsigned 7-51

ADDV Add Long Immediate Value1 7-25

SUBV Subtract Long Immediate Value1 7-187

CMPV Compare Long Immediate Value1 7-53

NORM Normalize 7-134

(Sheet 1 of 5)
7-10 Instruction Set

Arithmetic and
Logical
Instructions
(Cont.)

DIVS Division Step 7-61

MAX Maximum between two Ax-Accumulators 7-86

MAXD Maximum between Data Memory Location and Ax-
Accumulator

7-88

MIN Minimum between two Ax-Accumulators 7-90

LIM Limit Ax-Accumulator 7-67

MODA Modify Ax-Accumulator Conditionally 7-92

MODA Modifications:2

SHR Shift Right 7-172

SHR4 Shift Right Four 7-174

SHL Shift Left 7-168

SHL4 Shift Left Four 7-170

ROR Rotate Right Through Carry 7-159

ROL Rotate Left Through Carry 7-158

NOT Logical NOT 7-136

NEG Two’s Compliment 7-132

CLR Clear 7-46

COPY Copy other Accumulator 7-58

RND Round upper 20 bits 7-157

PACR Product Move and Round 7-140

CLRR Clear and Round 7-47

INC Increment by One 7-66

DEC Decrement by One 7-59

Multiply
Instructions

MPY Multiply 7-121

MPYSU Multiply Signed by Unsigned 7-127

MAC Multiply and Accumulate Previous Product 7-76

Table 7.7 CWDSP1650 Instruction Set Listing (Cont.)

Function Operation Description Page

(Sheet 2 of 5)
Instruction Functional Groups 7-11

Multiply
Instructions
(Cont.)

MACSU Multiply Signed by Unsigned and Accumulate Previous
Product

7-78

MACUS Multiply Unsigned by Signed and Accumulate Previous
Product

7-81

MACUU Multiply Unsigned by Unsigned and Accumulate Previous
Product

7-83

MAA Multiply and Accumulate Aligned Previous Product 7-72

MAASU Multiply Signed by Unsigned and Accumulate Aligned
Previous Product

7-74

MSU Multiply and Subtract Previous Product 7-129

MPYI Multiply Signed Short Immediate 7-123

SQR Square 7-176

SQRA Square and Accumulate Previous Product 7-178

BMU
Instructions

SET Set Bit Field 7-162

RST Reset Bit Field 7-160

CHNG Change Bit Field 7-44

TST0 Test Bit Field for Zeroes 7-193

TST1 Test Bit Field for Ones 7-195

TSTB Test Specific Bit 7-198

SHFC Shift Accumulators According to Shift Value Register
Conditionally

7-164

SHFI Shift Accumulators by an Immediate Shift Value 7-166

EXP Evaluate the Exponent Value 7-64

MODB Modify Bx-Accumulator Conditionally 7-96

MODB Modifications:2

SHR Shift Right 7-172

SHR4 Shift Right Four 7-174

SHL Shift Left 7-168

Table 7.7 CWDSP1650 Instruction Set Listing (Cont.)

Function Operation Description Page

(Sheet 3 of 5)
7-12 Instruction Set

BMU
Instructions
(Cont.)

MODB Modifications: (Cont.)

SHL4 Shift Left Four 7-170

ROR Rotate Right through Carry 7-159

ROL Rotate Left through Carry 7-158

CLR Clear 7-46

Move
Instructions

MOV Move Data 7-101

MOVP Move from Program Memory into Data Memory 7-113

MOVD Move from Data Memory into Program Memory 7-112

MOVS Move and Shift according to Shift Value Register 7-117

MOVSI Move and Shift according to an Immediate Shift Value 7-119

MOVR Move and Round 7-115

PUSH Push Register or Long Immediate Value onto Stack 7-143

POP Pop from Software Stack into Register 7-141

SWAP Swap Ax and Bx Accumulators 7-190

BANKE Bank Exchange 7-32

Branch/Call
Instructions

BR Conditional Branch 7-37

BRR Relative Conditional Branch 7-39

CALL Conditional Call Subroutine 7-40

CALLR Relative Condition Call Subroutine 7-42

CALLA Call Subroutine at Location Specified by Ax Accumulator 7-41

RET Return Conditionally 7-147

RETD Delayed Return 7-149

RETI Return from Interrupt Conditionally 7-151

RETID Delayed Return from Interrupt 7-153

RETS Return with Short Immediate Parameter 7-155

Table 7.7 CWDSP1650 Instruction Set Listing (Cont.)

Function Operation Description Page

(Sheet 4 of 5)
Instruction Functional Groups 7-13

7.3.1 Shift Operations

All shift operations are performed in a single cycle. Each of the four
accumulators can be shifted according to a six-bit signed number,
representing -32 to +31 shifts, embedded in the instruction opcode. A left
shift is indicated by a positive number; a right shift by a negative number.

The SV register content can be used to cause a conditional shift of
between -36 and +36 bits. Conditional shifting supports calculating the
amount of shifts at run time, as in normalization operations (refer to
Section 2.4.2.4, “Normalization.”) The source and the destination
accumulators do not have to be the same. If the accumulators are
different, the source accumulator is unaffected. For more information,
refer to the SHFC and SHFI instructions.

The shift and rotate operations included in the MODA and MODB
instructions are also performed conditionally. MODA and MODB include
one-bit right and left arithmetic-shift and rotate, and four-bit right and left
arithmetic-shift. Refer to the MODA and MODB instructions for more
information.

Control and
Miscellaneous
Instructions

NOP No Operation 7-133

MODR Modify Register N 7-99

EINT Enable Interrupt 7-63

DINT Disable Interrupt 7-60

TRAP Software Interrupt 7-192

LOAD Load Specific Field into Registers - page, modx, stepx, ps 7-69

CNTX Context Switching Store or Restore 7-55

Loop
Instructions

REP Repeat Next Instruction 7-145

BKREP Block Repeat 7-34

BREAK Break from a Block-Repeat 7-38

1. To or from a register or a data memory location.
2. Shaded cells are modifications of either MODA or MODB.

Table 7.7 CWDSP1650 Instruction Set Listing (Cont.)

Function Operation Description Page

(Sheet 5 of 5)
7-14 Instruction Set

The Status Mode bit (S) in the ST2 register determines whether the shift
is arithmetic or logical. Figure 7.1 shows an arithmetic right shift of an
accumulator. During an arithmetic right shift, the most-significant bits are
sign extended and the least significant bit is loaded into the C flag.

Figure 7.1 Arithmetic Shift Right

Figure 7.2 shows a logical right shift of an accumulator. During a logical
right shift, the most-significant bits are filled with zeros.

Figure 7.2 Logical Shift Right

Arithmetic left shifts and logical left shifts are performed identically (see
Figure 7.3). The arithmetic left shifts and logical left shifts both fill the
least-significant bits with zeros.

Figure 7.3 Arithmetic and Logical Shift Left

7.3.2 Move and Shift Operations

The move and shift operations (MOVS and MOVSI) perform in a single
cycle. The accumulators are loaded from one of the registers or from a
data memory location, addressed in direct addressing mode, or in
indirect addressing mode, according to the SV shift value. The shifting
range is +36 to -36, (shift left is indicated by a positive number; shift right
by a negative number). The accumulators can also be loaded by one of
the DAAU registers (Rn registers) and shifted according to a constant
embedded in the instruction. The shifting range in this case is +15 to -16.
The Status Mode bit (S) in the ST2 register determines whether the shift
is arithmetic or logical, as described in Section 7.3.1, “Shift Operations.”
For more information, see the MOVS and MOVSI instructions in
Section 7.4, “Instruction Set List.”

→ C

extension high low

0 → → C

extension high low

C ← ← 0

extension high low
Instruction Functional Groups 7-15

7.3.3 Rounding Operations

The MOVR and MODA instructions can round the contents of the
accumulator either in a single cycle or in parallel with other operations.
For more information, see the MOVR and MODA instructions.

7.3.4 Division Step Operations

The ALU supports a single-cycle division step. For more details, see the
DIVS instruction.

7.3.5 Logical Operations

The AND, OR, and XOR logical operations operate on 36 bit wide data.
16-bit operands are zero extended when used with these logical
operations. The source and destination Ax Accumulators of these
instructions are always the same. For example, the instruction
and (r1), a0 ANDs the contents of register R1 with the contents of the
A0 accumulator and stores the result in the A0 Accumulator.

Logical operations between the two Ax Accumulators are also possible,
for example, the instruction and a0, a1 ANDs the contents of the A0
and A1 Accumulators together. The results are stored in Accumulator A1.
For details, refer to the detailed descriptions of the AND, OR, and XOR
instructions in this chapter.

Other logical operations are SET, RST, CHNG, TST0, TST1, and TSTB.
These operations are executed on one of the registers or on data
memory contents. Refer to Section 2.4.2.5, “Bit-Field Operations.”

7.3.6 MAX and MIN Instructions

The MAX and MIN instructions are single-cycle operations used to find
maximum and minimum values. The two Ax accumulators are compared
and if the non-specified accumulator is found to be the larger (or smaller
for the MIN instruction) then this value overwrites the value in the
specified accumulator. Hence, the specified accumulator holds the
maximum/minimum value of the two accumulators after the operation.

The R0 pointer can be used in the same instruction as a buffer pointer, for
example. R0 can be postmodified according to the specified mode in the
instruction. If a new maximal or minimal number is found, the R0 pointer is
also latched into the minimum/maximum pointer latching (MIXP) register.
7-16 Instruction Set

The maximum operation can also be performed directly on a data
memory location pointed to by the R0 register (MAXD instruction). With
this single-cycle instruction, the maximal value is saved in the defined
Ax Accumulator and the R0 value is written into the MIXP register.

In finding the maximum value, the pointer of the first element or the last
element is latched, using greater than (>), or equal or greater than (≥)
conditions, respectively. In finding the minimum value, the pointer of the
first element or the last element is latched, using less than (<), or equal
or less than (≤) conditions, respectively.

Refer to the MAX, MAXD, and MIN instructions in this chapter. For more
details on the R0 and MIXP registers, refer to Section 4.2, “DAAU Registers.”

7.3.7 Multiplication Instructions

The core supports single- and double-precision multiplications. The
signed-by-signed operation is used to multiply or multiply-accumulate the
signed portions of the numbers. The signed-by-unsigned operation is
used to multiply or multiply-accumulate the signed portion of the number
with the lower, unsigned portion of the double-precision number.
Additional support for double-precision operations is given by shifting the
P register 16 bits to the right before accumulating it, during a multiply-
accumulate instruction, or to shift the partial multiplication result.

7.4 Instruction Set List

The instruction set descriptions are listed alphabetically. Each instruction
definition contains the instruction format, syntax, instruction description,
operation, flags, cycles, and an example. See Section 7.3, “Instruction
Functional Groups,” for a listing of all instructions, grouped by function,
and specific instruction page numbers.

Most core instructions are executed in a single cycle. The instruction
execution time is denoted by Xc, where X is the number of cycles.
Instructions that have a long immediate, long direct, or long index
operand as one of the operand options take an additional cycle to
execute. Instructions that break the pipeline may have a different
execution time depending on whether their condition is met or not met
(for example, the CALL instruction). The execution time is indicated for
both conditions in the Cycles section.
Instruction Set List 7-17

ADD
ADD Add

Opcode

Syntax add operand, ai

Description The contents of ai and operand are added to form either a 16-bit or a
32-bit result. The result is stored in ai[35:0]. If an operand other than p
or aj register is selected, the contents of operand are added to ai[15:0]
to form a 16-bit addition. If p or aj register is selected for the operand,
p[31:0] is added to ai[31:0]. In both cases, the sign is extended through
ai[35:32].

15 13 12 9 8 7 0

Short Direct 101 0011 i direct

15 13 12 9 8 7 3 2 0

Long Direct (MSW) 110 1010 i 11111 011

15 0

Long Direct (LSW) long direct

15 13 12 9 8 7 5 4 3 2 0

Indirect 100 0011 i 100 mod rn

15 13 12 9 8 7 5 4 0

Register 100 0011 i 101 REG

15 12 11 9 8 7 0

Short Immediate 1100 011 i short immediate

15 12 11 9 8 7 5 4 0

Long Immediate
(MSW) 1000 011 i 110 xxxxx

15 0

Long Immediate
(LSW) long immediate
7-18 Instruction Set

ADD

Chapter 7 Instruction Set
Instruction Set List
ADD Add

Operation ai ← ai + operand

operand = REG 1

(rN)
short direct address
[##direct address]
#unsigned short immediate
##long immediate
(rb + offset7)
(rb+##offset)

1. The REG cannot be ai or bi.

Flags affected

Cycles

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Direct 1 1

Long Direct 2 2

Indirect 1 1

Register 1 1

Short Immediate 1 1

Long Immediate 2 2

Short Index 1 1

Long Index 2 2
Instruction Set List 7-19

ADD
ADD Add

Examples add (r0), a0

Before Execution:

After Execution:

add 0x100, a0

Before Execution:

After Execution:

add ##0x1001, a0

Before Execution:

After Execution:

a0: 0 8000 0000 (r0): 001E

a0: 0 8000 001E (r0): 001E

a0: 0 0000 0000 0x100: 00FF

a0: 0 0000 00FF 0x100: 00FF

a0: 0 1234 FFE0

a0: 0 1235 0FE1
7-20 Instruction Set

ADDH
ADDH Add to High Accumulator

Opcode

Syntax addh operand, ai

Description The contents of operand are added to ai[31:16] to form a 16-bit addition.
ai[15:0] is unaffected after the operation.

Operation ai + operand * 2 16 → ai

The ail is unaffected.

operand = REG 1

(rN)
short direct address

1. The REG cannot be bi, ai, or p.

Flags affected

Cycles

15 13 12 9 8 7 0

Short Direct 101 1001 i direct

15 13 12 9 8 7 5 4 3 2 0

Indirect 100 1001 i 100 mod rN

15 13 12 9 8 7 5 4 0

Register 100 1001 i 101 REG

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Direct 1 1

Indirect 1 1

Register 1 1
Instruction Set List 7-21

ADDH
ADDH Add to High Accumulator

Examples addh b1h, a0

Before Execution:

After Execution:

addh (r0)+, a0

Before Execution:

After Execution:

a0: 0 10EE 8000 b1h: E320

a0: F F40E 8000 b1h: E320

a0: 0 10EE 8000 r0: 0006

0x0006: 0200

0x0007: 9476

a0: 0 10EE 8200 r0: 0007

0x0006: 0200

0x0007: 9476
7-22 Instruction Set

ADDL
ADDL Add to Low Accumulator

Opcode

Syntax addl operand, ai

Description The contents of operand are added to ai[15:0] to form a 16-bit addition.
Sign-extension of operand is suppressed for this operation.

Operation ai + operand → ai

operand = REG 1

(rN)
short direct address

1. The REG cannot be bi, ai, or p.

Flags

Cycles

15 13 12 9 8 7 0

Short Direct 101 1010 i direct

15 13 12 9 8 7 5 4 3 2 0

Indirect 100 1010 i 100 mod rN

15 13 12 9 8 7 5 4 0

Register 100 1010 i 101 REG

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Direct 1 1

Indirect 1 1

Register 1 1
Instruction Set List 7-23

ADDL
ADDL Add to Low Accumulator

Example addl lc, a0

Before Execution:

After Execution:

a0: 0 4320 8000 lc: FFFF

a0: 0 4321 7FFF lc: FFFF
7-24 Instruction Set

ADDV
ADDV Add Long Immediate Value to a Register or a Data Memory Location

Opcode

Syntax addv ##long immediate, doperand

Description The contents of long immediate value are added to doperand to form a
16-bit result. The result of the operation is stored in the doperand. The
operand and long immediate values are sign-extended before the
addition. If the doperand is not part of an accumulator (ail , aih , aie ,
bil , or bih) then the accumulators are unaffected. If the operand is part
of an accumulator, only the addressed part is affected.

Operation doperand ← ##long immediate + doperand

doperand = REG 1

(rN)
short direct address

1. The REG cannot be bi, ai, p, or pc. Note that ai can be used in add ##long
immediate, ai instruction.

15 12 11 9 8 7 0

Short Direct 1110 011 1 direct

15 12 11 9 8 5 4 3 2 0

Indirect 1000 011 0111 mod rN

15 12 11 9 8 5 4 0

Register 1000 011 1111 REG
Instruction Set List 7-25

ADDV
ADDV Add Long Immediate Value to a Register or a Data Memory Location

Flags affected

Z, M, and C are a result of the 16-bit operation. Bit 15 affects the M flag.

When the operand is not st0:

When adding a long immediate value to ST0, the result is stored in ST0.
When adding a long immediate value to ST1, the flags are affected by
the ALU output, as usual.

Note that when the operand is part of an accumulator (ail , aih , aie ,
bil , or bih), only the addressed part is affected. For example, if the
instruction addv ##long immediate , a0l generates a carry, the carry
flag is set, however, a0h is unchanged. On the other hand, the instruction
addl ##long immediate, a0l (with same a0 and immediate values)
changes the a0h and affects the carry flag according to bit 36 of the ALU
result.

When the operand is st0:

ST0 (including the flags) accepts the addition result, regardless of the
a0e bits.

Cycles

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Direct 2 2

Indirect 2 2

Register 2 2
7-26 Instruction Set

ADDV
ADDV Add Long Immediate Value to a Register or a Data Memory Location

Examples addv ##0xFE00, a0l

Before Execution:

After Execution:

addv ##0x0002, 0

Before Execution:

After Execution:

a0: 0 3000 3F01

a0: 0 3000 3D01

0x100: 0120 page: 01

0x100: 0122 page: 01
Instruction Set List 7-27

AND
AND And

Opcode
15 13 12 9 8 7 0

Short Direct 101 0001 i direct

15 13 12 9 8 7 3 2 0

Long Direct
(MSW) 110 1010 i 11111 001

15 0

Long Direct
(LSW) long direct

15 13 12 9 8 7 5 4 3 2 0

Indirect 100 0001 i 100 mod rN

15 13 12 9 8 7 5 4 0

Register 100 0001 i 101 REG

15 12 11 9 8 7 0

Short Immediate 1100 001 i short immediate

15 12 11 9 8 7 5 4 0

Long Immediate
(MSW) 1000 001 i 110 xxxxx

15 0

Long Immediate
(LSW) long immediate

15 12 11 9 8 7 6 0

Short Index 0100 001 i 0 Offset

15 12 11 9 8 7 6 3 2 0

Long Index (MSW) 1101 010 i 0 11011 001

15 0

Long Index (LSW) long index
7-28 Instruction Set

AND
AND And

Syntax and operand, ai

Description The contents of operand are combined with the contents of ai in a bitwise
logical-AND operation. If p or aj is selected for operand, ai[35:0] is
logically ANDed with operand and the result is stored in ai[35:0]. If the
operand is short immediate, the operand is zero-extended to form a
36-bit operand, then ANDed with the destination accumulator. Bits [15:8]
are unaffected; other bits of the accumulator are cleared.

The instruction and #unsigned short immediate, ai can be used for
masking out (clearing) some of the low-order bits at a 16-bit destination.
The example below shows masking out of the top 8 bits of a memory
location:

mov (r0), a0
and #0xf, a0
mov a0, (r0)

Using the and instruction, bits [15:8] are unaffected, therefore the high-
order bits at the destination do not change. See also the rst instruction.

If the operand is a 16-bit register or a long immediate value, the operand
is zero-extended to form a 36-bit operand, then ANDed with the
accumulator. Therefore, this instruction clears the upper bits of the
accumulator.

Operation If operand is ai or p
ai[35:0] AND operand → ai[35:0]

If operand is unsigned short immediate
ai[7:0] AND operand → ai[7:0]
ai[15:8] → ai[15:8] 1

0 → ai[35:16]

If operand is REG, (rN), long immediate
ai[15:0] AND operand → ai[15:0]
0 → ai[35:16]
Instruction Set List 7-29

AND
AND And

operand = REG 1

(rN)
short direct address
[##direct address]
#unsigned short immediate
##long immediate
(rb+offset7)
(rb+##offset)

1. The REG cannot be bi.

Flags

Note: The Z flag is set if all ALU output bits after the operation are zero;
otherwise, it is cleared. When the operand is unsigned short immediate,
ALU output bit [35:8] = 0 bits [7:0] = ai[7:0] AND operand.

Cycles

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Direct 1 1

Long Direct 2 2

Indirect 1 1

Register 1 1

Short Immediate 1 1

Long Immediate 2 2

Short Index 1 1

Long Index 2 2
7-30 Instruction Set

AND
AND And

Example and #30, a0

Before Execution:

After Execution:

a0: 0 0820 FFFF

a0: 0 0000 FF1E
Instruction Set List 7-31

BANKE
BANKE Bank Exchange

Opcode

Syntax banke [r0] [,r1] [,r4] [,cfgi]

Description Exchange the list of operands with their respective shadow registers.

The bank bits select the registers to be exchanged, as shown below:

Assembler syntax examples:

banke r0
banke r1, cfgi
banke r1, r0
banke cfgi, r1, r4

For more details refer to Section 6.3.6, “Context Switching.”

Operation operand ↔ operandb

Flags

15 7 6 4 3 0

banke 010010111 xxx bank

Bit Number Register

0 r0

1 r1

2 r4

3 cfgi

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
7-32 Instruction Set

BANKE
BANKE Bank Exchange

Flags affected This instruction does not affect the flags.

Cycles

Example banke r0

Before Execution:

After Execution:

Cycles Words

banke 1 1

r0: 2F01 r0b: 0100

r0: 0100 r0b: 2F01
Instruction Set List 7-33

BKREP
BKREP Block Repeat

Opcode

Syntax bkrep operand, addr

Description This instruction begins a block repeat that is to be repeated operand + 1
times. The value of operand can range from 0 to 65535.

The start address of the code block to be repeated is the address after
the bkrep instruction, and the last address is the one specified by the
addr field. If the last instruction at the block repeat is a one-word
instruction, addr is the address of this instruction. If the last instruction
at the block repeat is a two-word instruction, add is the address of the
second word of the instruction.

The operand is inserted into the loop counter (LC) register. The inloop
status bit LP is set to one indicating a block repeat loop. The block repeat
nesting level counter is incremented by one. The repeated block is
interruptible.

This instruction can be nested. Four levels of block repeat can be used.
The block-repeat minimum length is two words.

Restrictions when using bkrep :

1. The break instruction cannot start at the last address of the block
repeat loop.

2. The following instructions cannot start at addr – 1 of the block repeat
loop: mov soperand, icr; mov icr, ab .

3. The following instructions cannot start at the last two addresses of
the block repeat loop: instructions with lc or icr as a source, br,
brr, call, callr, calla, ret, reti, rets, retd, retid,
bkrep, and rep instructions with pc or lc as a destination.

15 8 7 5 4 0

Register 01011101 xxx REG

15 8 7 0

unsigned short
immediate 01011100 short immediate
7-34 Instruction Set

BKREP
BKREP Block Repeat

Description
(Cont.)

4. The mov soperand, icr instruction and instructions with lc as a
destination cannot start at addr – 2 of the block repeat loop.

5. The following instructions cannot start at the addr – 3 of the block
repeat loop: set/rst/chng/addv/subv with lc as a destination.

6. Notice that illegal instruction sequences are also restricted as the
last and first instructions of a block-repeat loop.

7. Two block-repeats cannot have the same last address.

Operation operand → lc
1 → LP status bit
BCx + 1 → BCx

operand: #unsigned short immediate 1

REG2,3

1. When using an unsigned short immediate operand, the number of repetitions
is between 1 to 256. When transferring the #unsigned short immediate
number into the lc register, it is copied to the low-order eight bits of the lc.
The high-order eight bits are cleared.

2. In the block-repeat outer level, the REG cannot be ai, bi, or p. In other block-
repeat levels, the REG cannot be ai, bi, p, or lc. Note: The assembler cannot
check the restriction on the lc register in a nested block-repeat.

3. The data read while reading lc during a block repeat loop execution is of the
loop counter. If the outer block repeat loop has finished normally the contents
of lc is 0; if it was finished using break, the contents of lc will be the value of
the loop counter at the breakpoint.

Flags affected This instruction does not affect the flags.
Instruction Set List 7-35

BKREP
BKREP Block Repeat

Cycles

Example bkrep #num1-1, >%main
.
.

bkrep #num2-1, >%inner
moda clr a0
.
.

%inner: mov a0h, (r0)+
.
.

%main: modr (r0)+

The outer loop that ends with label %main is executed num1 times while
the inner loop that ends with label %inner is executed num2 times. These
nested loops are executed without any overhead in wrapping around
from the last statement of the loops to the first statement of the loops.

Cycles Words

Register 2 2

short immediate 2 2
7-36 Instruction Set

BR
BR Conditional Branch

Opcode

Syntax br address [, cond]

Description Branch to the specified address, if cond is met. If condition is met,
address is the address/label of the new program memory location. The
address is the second word of the instruction.

Operation If condition then
address → pc

If condition is met, branch to the program memory location specified by
address .

Flags affected This instruction does not affect the flags.

Cycles

Example mov @var, a0
br Process, eq

The flags are set according to the contents of variable located at var by
the mov @var, a0 instruction. If Z = 1 in the ST0 Status Register, the
branch is executed. Otherwise, the instruction following the branch
instruction is executed.

15 6 5 4 3 0

br 0100000110 xx cond

Cycles Words

br 2 (if no branch)
3 (if branch occurs)

2

Instruction Set List 7-37

BREAK
BREAK Break from Block Repeat

Opcode

Syntax break

Description This instruction is used for breaking out of the current block-repeat loop.
The internal registers which contain the first address, last address and
loop-counter are popped.

The break instruction cannot be the last instruction of a block-repeat
loop.

A break at the outer level does not change lc and resets LP bit.

Operation None.

Flags affected This instruction does not affect the flags.

Cycles

Example bkrep #num, <%main
.
tsb @var, #15
brr <%continue, eq
break
brr %leaveloop
.

%continue:
.
.

%main:
.

%leaveloop:

Bit 15 of the variable located at label var is tested. If the bit is not clear,
the loop is terminated. If it is cleared, the loop continues.

15 6 5 0

break 1101001111 xxxxxx

Cycles Words

Break 1 1
7-38 Instruction Set

BRR
BRR Relative Conditional Branch

Opcode

Syntax brr offset [, cond]

Description If condition is met, a branch is executed to the program memory location:
address of the brr instruction + offset + 1. The offset range is
-63 to +64. (Offset range is offset +1.)

Operation If condition then
‘address of brr inst.’ + offset + 1 → pc

Assembler syntax:
brr offset [,cond]

or
brr $-offset [,cond]

or
brr label [,cond]

When label is the new program memory location, the instruction word
includes the “relative address” calculated by the assembler as follows:
(label address) – (brr address) – 1.

Flags affected This instruction does not affect the flags.

Cycles

Example This example tests bit 2 of the variable var . The branch instruction will
cause a jump back to this test until the bit is cleared.

%init: tstb @var, #2
 brr <%init, eq

15 11 10 4 3 0

brr 01010 offset cond

Cycles Words

brr 2 1
Instruction Set List 7-39

CALL
CALL Conditional Call Subroutine

Opcode

Syntax call address [,cond]

Description If condition is met, address is the address/label of the new program
memory location. The address is the second word of the instruction.

Operation If condition then
sp – 1 → sp
pc → (sp)
address → pc

If the condition is met, the stack pointer (sp) is predecremented, the
program counter (pc) is pushed into the software stack, and a branch is
performed to the program memory location specified by address .

Flags affected This instruction does not affect the flags.

Cycles

Example The code segment ini of the routine subroutine is called within the
main loop.

bkrep #sample, >%main
.
call subroutine.ini
.

%main:

15 6 5 4 3 0

call 0100000111 xx cond

Cycles Words

call 2 (if condition not met)
3 (if condition met)

2

7-40 Instruction Set

CALLA
CALLA Call Subroutine at Location Specified by the ai Accumulator

Opcode

Syntax calla ail

Description Call subroutine indirect (address from ai1). The stack pointer (sp) is
predecremented. The program counter (pc) is pushed onto the software
stack, and a branch is executed to the address pointed to by
accumulator-low.

This instruction can be used to perform computed subroutine calls.

Operation sp – 1 → sp
pc → sp
ail → pc

Flags affected This instruction does not affect the flags.

Cycles

Example In this example, the program address contained in a0l is called within the
main loop.

bkrep #sample, >%main
.
calla a0l

.

.
%main:

15 9 8 7 6 5 4 3 0

calla 1101010 i 1 xx 0 xxxx

Cycles Words

calla 3 1
Instruction Set List 7-41

CALLR
CALLR Relative Conditional Call Subroutine

Opcode

Syntax callr offset [,cond]

Description If the condition is met, the stack pointer (sp) is predecremented, the
program counter (pc) is pushed on to the software stack and a branch is
executed to the program memory location (the callr instruction
+ offset + 1). The offset range is between -63 to +64, defined as
offset + 1.

Operation If condition then
sp – 1 → sp
pc → (sp
address → pc

Assembler syntax:
callr $+offset [,cond]

or
callr $-offset [,cond]

or
callr label [,cond]

New execution address is label. The instruction word includes the
“relative address” calculated by the assembler as follows: (label address)
– (callr address) – 1.

Flags This instruction does not affect the flags.

15 11 10 4 3 0

callr 00010 offset cond
7-42 Instruction Set

CALLR
CALLR Relative Conditional Call Subroutine

Cycles

Example In this example, code segment ini is called within the main loop if
register r0 has not been decremented to zero (R flag clear).

bkrep #sample, >%main
.
modr (r0)-
callr >%ini, nr
.

%main:
.
.
.
%ini:
.
.
ret

Cycles Words

callr 2 1
Instruction Set List 7-43

CHNG
CHNG Change Bit Field

Opcode

Syntax chng ##long immediate, operand

Description Change specific bit-field in a 16-bit operand according to a long
immediate value. The long immediate value contains ones in the bit-field
location.

If the operand is not part of an accumulator (ail , aih , aie , bil , or bih)
then the accumulators are unaffected. If the operand is part of an
accumulator, only the addressed part is affected.

The operand and the long immediate values are sign-extension
suppressed.

Operation operand XOR ##long immediate → operand

operand = REG 1

(rN)
short direct address

1. The REG cannot be ai, bi, or p.

15 12 11 9 8 7 0

Short Direct 1110 010 1 direct

15 12 11 9 8 5 4 3 2 0

Indirect 1000 010 0111 mod rN

15 12 11 9 8 5 4 0

Register 1000 010 1111 REG
7-44 Instruction Set

CHNG
CHNG Change Bit Field

Flags affected When the operand is not st0 :

When the operand is st0 :

The specified bits are changed according to the bit-field in the long
immediate value, regardless whether or not the A0E bits have changed.

When changing the A0E bits (chng ##long immediate, st0) the flags
are affected according to the long immediate value. When changing the
A1E bits (chng ##long immediate, st1), the flags are updated
according to the ALU output.

Cycles

Example chng ##0x7FFF, a0l

Before Execution:

After Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Direct 2 2

Indirect 2 2

Register 2 2

a0: 0 FFFF 1011

a0: 0 FFFF 6FEE
Instruction Set List 7-45

CLR
CLR Clear Accumulator

Opcode

Syntax clr ai [, cond] or
clr bi [, cond]

Description Clear specified accumulator to zero. Also refer to the moda and modb
instructions on pages 7-92 and 7-96.

Operation clr ai: ai = 0
clr bi: bi = 0

Flags affected

Cycles

Example clr a0, true

Before Execution:

After Execution:

15 13 12 11 8 7 4 3 0

clr ai 011 i 0111 0110 cond

15 13 12 11 8 7 6 4 3 0

clr bi 011 i 0111 x 110 cond

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

clr 1 1

a1: 0 0013 3A05

a1: 0 0000 0000
7-46 Instruction Set

CLRR
CLRR Clear and Round A-Accumulator

Opcode

Syntax clrr ai [, cond]

Description Refer to the moda instruction on page 7-92 for complete descriptions of
this instruction.

Operation ai = 0x8000

Flags affected

Cycles

Example In this example, assume the M flag in ST0 is set.

clrr a1, lt

Before Execution:

After Execution:

15 13 12 11 8 7 4 3 0

clrr 011 i 0111 1100 cond

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

clrr 1 1

a1: 0 0013 3A05

a1: 0 0000 8000
Instruction Set List 7-47

CMP
CMP Compare

Opcode
15 13 12 9 8 7 0

Short Direct 101 0110 i direct

15 13 12 9 8 7 3 2 0

Long Direct
(MSW) 110 1010 i 11111 110

15 0

Long Direct
(LSW) long direct

15 13 12 9 8 7 5 4 3 2 0

Indirect 100 0110 i 100 mod rN

15 13 12 9 8 7 5 4 0

Register 100 0110 i 101 REG

15 12 11 9 8 7 0

Short Immediate 1100 110 i short immediate

15 12 11 9 8 7 5 4 0

Long Immediate
(MSW) 1000 110 i 110 xxxxx

15 0

Long Immediate
(LSW) long immediate

15 12 11 9 8 7 6 0

Short Index 0100 110 i 0 Offset

15 12 11 9 8 7 3 2 0

Long Index
(MSW) 1101 010 i 11011 110

15 0

Long Index
(LSW) long index
7-48 Instruction Set

CMP
CMP Compare

Syntax cmp operand, ai

Description The contents of ai are compared with the contents of operand and the
appropriate flags are set accordingly. Both ai and operand are treated as
signed numbers. The operand is LSB adjusted and the comparison is
made against ai.

Operation ai - operand

operand = REG 1

(rN)
short direct address
[##direct address]
#unsigned short immediate
##long immediate
(rb + offset 7)
(rb+##offset)

1. The REG cannot be bi.

Flags affected

Cycles

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Direct 1 1

Long Direct 2 2

Indirect 1 1

Register 1 1

Short Immediate 1 1

Long Immediate 2 2

Short Index 1 1

Long Index 2 2
Instruction Set List 7-49

CMP
CMP Compare

Example cmp #8, a0

Before Execution:

After Execution:

Z, M, N, V, C bits cleared, E bit set.

a0: 0 0820 FFFF

a0: 0 0820 FFFF
7-50 Instruction Set

CMPU
CMPU Compare Unsigned

Opcode

Syntax cmpu operand, ai

Description The contents of operand are compared with ai[15:0] with sign bits being
ignored, and the flags are set accordingly. The sign extension of the
operand is suppressed for this operation.

Operation ai - operand

operand = REG 1

(rN)
short direct address

1. The REG cannot be bi, ai, or p.

In order to compare ai with an unsigned 16-bit operand, ai[35:16] should
be cleared using either the mov → ail instruction or other instructions).

Flags affected

15 13 12 9 8 7 0

Short Direct 101 1111 i direct

15 13 12 9 8 7 5 4 3 2 0

Indirect 100 1111 i 100 mod rN

15 13 12 9 8 7 5 4 0

Register 100 1111 i 101 REG

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
Instruction Set List 7-51

CMPU
CMPU Compare Unsigned

Cycles

Example cmpu r4, a0

Before Execution:

After Execution:

The Z, N, V, E bits are cleared, M and C bits are set.

Cycles Words

Short Direct 1 1

Indirect 1 1

Register 1 1

a0: 0 0000 3A05 r4: 4000

a0: 0 0000 3A05 r4: 4000
7-52 Instruction Set

CMPV
CMPV Compare Long Immediate Value to a Register or a Data Memory
Location

Opcode

Syntax cmpv ##long immediate, operand

Description The contents of long immediate value are compared with operand and
the flags updated accordingly. The contents of the operand are
unaffected after the operation. The operand and long immediate values
are sign-extended prior to the comparison.

Operation operand - ##long immediate value

operand = REG 1

(rN)
short direct address

1. The REG cannot be bi, ai, p, or pc.

Note that ai can be used in the cmp ##long immediate, ai instruction.

Flags affected

Z, M, and C are the results of the 16-bit operation. M is affected by bit 15.

Note that the flags are set differently for the subv ##long immediate,
st0 and cmpv ##long immediate, st0 instructions.

15 12 11 9 8 7 0

Short Direct 1110 110 1 direct

15 12 11 9 8 5 4 3 2 0

Indirect 1000 110 0111 mod rN

15 12 11 9 8 5 4 0

Register 1000 110 1111 REG

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
Instruction Set List 7-53

CMPV
CMPV Compare Long Immediate Value to a Register or a Data Memory
Location

Cycles

Example cmpv ##0x004F, b0h

Before Execution:

After Execution:

The M and C bits are set, and the Z bit cleared.

Cycles Words

Short Direct 2 2

Indirect 2 2

Register 2 2

b0: 0 0013 3A05

b0: 0 0013 3A05
7-54 Instruction Set

CNTX
CNTX Context Switching Store or Restore

Opcode

Syntax cntx s | r

Description This instruction activates the context switching mechanism.

Operation s - store the shadow/swap bits and swap a1 and b1 accumulators
contents:

♦ The st0[0], st0[11:2], st1[11:10], and st2[7:0] bits are pushed to their
shadow bits.

♦ The page bits st1[7:0] are swapped with their alternative register.

♦ a1 is transferred into b1, b1 is transferred into a1.

r - restore the shadow/swap bits and swap a1 and b1 accumulators
contents:

♦ The st0[0], st9[11:2], st1[11:10], and st2[7:0] bits are popped from
their shadow bits.

♦ The page bits st1[7:0] are swapped with their alternative register.

♦ a1 is transferred into b1, b1 is transferred into a1.

15 6 5 4 3 0

cntx (store) 1101001110 x 0 xxxx

15 6 5 4 3 0

cntx (restore) 1101001110 x 1 xxxx
Instruction Set List 7-55

CNTX
CNTX Context Switching Store or Restore

Flags affected In a store, flags represent the data transferred into a1:

In a restore, flags are restored from their shadow bits:

Cycles

Example cntx s

Before Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

cntx 1 1

a1: 0 0000 0000 b1: 0 0007 00E0

st0: 0E20 st1: 0B00

st2: 1000
7-56 Instruction Set

CNTX
CNTX Context Switching Store or Restore

Example After Execution:

a1: 0 0007 00E0 b1: 0 0000 0000

st0: 0A20 st0s: 0E20

st1: 0B00 st1s: 0002

st2: 1000 st2s: 0000
Instruction Set List 7-57

COPY
COPY Copy Other A Accumulator

Opcode

Syntax copy ai [, cond]

Description Copy from contents of other A accumulator. Also see the moda instruction
on page 7-92.

Operation ai = ai

Flags affected

Cycles

Example copy a0, eq

(assume Z bit is set before execution of the instruction)

Before Execution:

After Execution:

Z, M, N, E are cleared.

15 13 12 11 8 7 4 3 0

copy 011 i 0111 1111 cond

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

copy 1 1

a0: 0 0780 0400 a1: 0 0007 00E0

a0: 0 0007 00E0 a1: 0 0007 00E0
7-58 Instruction Set

DEC
DEC Decrement A Accumulator by One

Opcode

Syntax dec ai [, cond]

Description Decrement ai accumulator by one if cond is true. Also see the moda
instruction on page 7-92.

Operation ai = ai - 1 [if cond=true]

Flags affected

Cycles

Example dec a, true

Before Execution:

After Execution:

Z, N are set, M, V, C, E are cleared, L unaffected.

15 13 12 11 8 7 4 3 0

dec 011 i 0111 1110 cond

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

copy 1 1

a0: 0 0000 0001

a0: 0 0000 0000
Instruction Set List 7-59

DINT
DINT Disable Interrupt

Opcode

Syntax dint

Description The IE bit is cleared, disabling interrupts.

Operation 0 → IE

Flags affected This instruction has no affect on flags.

Cycles

15 6 5 0

dint 0100001111 xxxxxx

Cycles Words

dint 1 1
7-60 Instruction Set

DIVS
DIVS Division Step

Opcode

Syntax divs direct address, ai

Description This instruction performs a division step for division of ai by the contents
of the direct address. The 16-bit dividend is stored in ail and the divisor
is stored in the direct address. The aie and aih registers are overwritten
during operation of the instruction. Each DIVS operation calculates one
quotient bit using a nonrestoring fractional division algorithm. To produce
an N-bit quotient, the division instruction is executed N times, where N
is the number of bits of precision desired in the quotient (0 ≤ N ≤ 16).
After the execution of the operation, the quotient is stored in ail and the
remainder is stored in aih. Both the dividend and the divisor must be
positive.

Operation ai - (direct address * 2 15) →ALU output
If ALU output < 0

then ai = ai * 2
else ai = ALU output * 2 + 1

The 16-bit dividend is placed at accumulator low; the accumulator high
and the accumulator extension are cleared. The divisor is placed at the
direct address.

For a 16-bit division, DIVS should be executed 16 times. After 16 times,
the quotient is in the accumulator low and the remainder is in the
accumulator high.

The dividend and the divisor must both be positive.

Flags affected

15 9 8 7 0

divs 0000111 i direct

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
Instruction Set List 7-61

DIVS
DIVS Division Step

Cycles

Example rep #15
divs 0x0050, a0

Before Execution:

After Execution:

Cycles Words

divs 1 1

a0: 0 0000 3C04 0050: 3420

a0: 0 07E4 0001 0050: 3420
7-62 Instruction Set

EINT
EINT Enable Interrupt

Opcode

Syntax eint

Description The IE bit is set, enabling interrupts.

Operation 1 → IE

Flags affected This instruction has no affect on flags.

Cycles

Example After the parameters are initialized, an interrupt is enabled by setting IE.

init:
.
mov ##Ptr, r4
.

eint

15 6 5 0

eint 0100001110 xxxxxx

Cycles Words

eint 1 1
Instruction Set List 7-63

EXP
EXP Evaluate the Exponent Value

Opcode

Syntax exp soperand [, ai]

Description Evaluate the exponent value of the operand. The operand can be either
REG (one of the registers) or a data memory location. The exponent
result, a signed six-bit value, is sign extended and written into the Shift
Value register (sv) and optionally into one of the A-accumulators. The
source operand (soperand) is unchanged.

The instruction following an exp instruction cannot move from/to the sv
register. The sv register is be used in shfc and movs instructions or as
a temporary general purpose register.

15 9 8 7 6 5 4 3 2 0

Indirect ai 1001100 i 01 x mod rN

15 9 8 7 5 4 0

Register ai 1001000 i 010 REG

15 9 8 7 6 5 4 3 2 0

Indirect sv 1001110 x 01 x mod rN

15 9 8 7 5 4 0

Register sv 1001010 x 010 REG

15 9 8 7 5 4 1 0

bj, ai 1001000 i 011 xxxx j

15 9 8 7 5 4 1 0

bi, sv 1001010 x 011 xxxx i
7-64 Instruction Set

EXP
EXP Evaluate the Exponent Value

Operation When using exp soperand :
Exponent (soperand) → sv
The soperand is unaffected.

When using exp soperand, ai :
Exponent (soperand) → sv and ai
The soperand is unaffected.

soperand: REG 1

(rN)

1. The REG cannot be p.

Flags

This instruction does not affect the flags.

Cycles

Example exp(r0)+, a0

Before Execution:

After Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Indirect, ai 1 1

Register, ai 1 1

Indirect, sv 1 1

Register, sv 1 1

a0: 0 8000 0000 (r0): 0020

a0: 0 0000 0009 (r0): 0020
Instruction Set List 7-65

INC
INC Increment A Accumulator by One

Opcode

Syntax inc ai [, cond]

Description Increments specified A accumulator. Also see the moda instruction on
page 7-92.

Operation ai = ai + 1 [if cond=true]

Flags affected

Cycles

Example inc a, true

Before Execution::

After Execution::

Z, N, M, V, C, E are cleared, L unaffected.

15 13 12 8 7 4 3 0

inc 011 i 0111 1101 cond

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

copy 1 1

a0: 0 0000 0040

a0: 0 0000 0041
7-66 Instruction Set

LIM
LIM Limit ai Accumulator

Opcode

Syntax lim ai[,a i]

Description This instruction saturates ai accumulator with maximum positive or
minimum negative value when the value in the accumulator exceeds
maximum or minimum representable value.

Operation When using lim ai :

if ai > 0x07FFFFFFF then
ai = 0x07FFFFFFF

else
if ai < 0xF80000000 then
ai = 0xF80000000

else
ai is unaffected

When using lim ai, a i:
ai is unaffected
if a i ≥ 0x07FFFFFFF then
ai = 0x07FFFFFFF

else
if ai ≤ 0xF80000000 then

ai = 0xF80000000
else

ai = ai

15 6 5 4 3 0

lim a0 0100100111 00 xxxx

15 6 5 4 3 0

lim a0, a1 0100100111 01 xxxx

15 6 5 4 3 0

lim a1, a0 0100100111 10 xxxx

15 6 5 4 3 0

lim a1 0100100111 11 xxxx
Instruction Set List 7-67

LIM
LIM Limit ai Accumulator

Flags affected

Note: L flag is set when limitation occurs.

Cycles

Example lim a0

Before Execution:

After Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

0

Cycles Words

lim 1 1

a0: 0 8490 0000

a0: 0 7FFF FFFF
7-68 Instruction Set

LOAD
LOAD Load Specific Fields into Registers

Opcode

Syntax load #immediate, operand

Description Load designated portion with immediate value.

Operation operand: #unsigned immediate 8 bit, page
The page bits, the low-order 8 bits of
st1, are loaded with an 8-bit constant
(0 to 255).

#unsigned immediate 9 bit, modi
#unsigned immediate 9 bit, modj

The modX bits, the high-order 9 bits of
cfgi are loaded with a 9-bit constant
(0 to 511 which means 1 to 512 modulo
options).

15 8 7 0

load page 00000100 short immediate

15 12 11 10 9 8 0

load modi 0000 0 01 short immediate

15 12 11 10 9 8 0

load modj 0000 1 01 short immediate

15 11 10 9 7 6 0

load stepi 11011 0 111 short immediate

15 11 10 9 7 6 0

load stepj 11011 1 111 short immediate

15 7 6 2 1 0

load ps 010011011 xxxxx immed
Instruction Set List 7-69

LOAD
LOAD Load Specific Fields into Registers

Operation
(Cont.)

#immediate 7 bit, stepi
#immediate 7 bit, stepj

The stepX bits, the low-order 7 bits of
cfgi, are loaded with a 7-bit constant.

#unsigned immediate 2-bit, ps
The ps status bits, bits 10 and 11 of ST1
are loaded with a two-bit constant. Refer
to Figure 4.10 Status Register 1 (ST1)
for the encoding of the ps bits.

The assembler syntax permits the use of lpg #unsigned short
immediate , which is equivalent to load #unsigned short
immediate, page . The page bits (the low-order eight bits of ST1) are
loaded with an eight-bit constant (0 to 255).

Flags affected This instruction does not affect the flags.

Cycles

Example Load integer value 4 into stepi in cfgi register.

load #4, stepi

Before Execution:

After Execution:

Cycles Words

Load 1 1

cfgi: 0020

cfgi: 0004
7-70 Instruction Set

LPG
LPG Load the Page Bits

Opcode

Syntax lpg #unsigned short immediate

Description Refer to the load instruction for a complete description of this instruction.

15 8 7 0

lpg 00000100 short immediate
Instruction Set List 7-71

MAA
MAA Multiply and Accumulate Aligned Previous Product

Opcode

Syntax maa operand1, operand2, ai

Description The previous product (p) is sign-extended to 36 bits and shifted as
defined in the PS field in ST1. The shifted value is aligned with sign-
extension 16 bits to the right and is added to ai. The result is stored in
ai. The signed operands are multiplied together and stored in p.

Operation ai + aligned & shifted p → ai
operand1 → y1

operand2 → x
signed y * signed x → p

operand1, operand2: y, short direct address
y, (rN)
y, REG 2

(rJ), (rI) 3

(rN), ##long immediate

1. y → y means that y retains its value.
2. The REG cannot be ai, bi, or p.
3. The multiplication in maa (rJ), (rI), ai is between Y-Memory and X-Memory

only, where rJ points to Y-Memory, rI points to X-Memory.

15 12 11 10 9 8 7 0

Y Direct 1110 i 10 0 direct

15 12 11 10 8 7 5 4 3 2 0

Y Indirect 1000 i 100 001 mod rN

15 12 11 10 8 7 5 4 0

Y Register 1000 i 100 010 REG

15 12 11 10 8 7 5 4 3 2 0

Indirect Long
Immediate (MSW) 1000 i 100 000 mod rN

15 0

Indirect Long
Immediate (LSW) long immediate

15 12 11 10 8 7 6 5 4 3 2 1 0

(rJ), (rI) 1101 i 100 0 jj ii w qq
7-72 Instruction Set

MAA
MAA Multiply and Accumulate Aligned Previous Product

Flags

Cycles

Example maa (r4)+, (r0)-, a1

Before Execution:

After Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Direct 1 1

Indirect 1 1

Register 1 1

(rJ), (rI) 1 1

Long Immediate 2 2

(r4): FF20 (r0): 0200

a1: 0 4350 FFE3 p: 2345 6789

a1: 0 4351 2328

p: FFFE 4000
Instruction Set List 7-73

MAASU
MAASU Multiply Signed by Unsigned and Accumulate Aligned Previous
Product

Opcode

Syntax maasu operand1, operand2, ai

Description The previous product (p) is sign-extended to 36 bits and shifted as
defined in the PS field in ST1. The shifted value is aligned with sign-
extension 16 bits to the right and is added to ai. The result is stored in
ai. The signed operand1 is multiplied with the unsigned operand2, and
the result is stored in p.

Operation ai + aligned & shifted p → ai
operand1 → y1

operand2 → x
signed y * unsigned x → p

operand1, operand2: y, (rN)
y, REG 2

(rJ), (rI) 3

(rN), ##long immediate

1. y → y means that y retains its value.
2. The REG cannot be ai, bi, or p.
3. The multiplication in maasu (rJ), (rI), ai is between X-Memory and Y-Memory

only, where rJ points to Y-Memory, rI points to X-Memory.

15 12 11 10 8 7 5 4 3 2 0

Y Indirect 1000 i 111 001 mod rN

15 12 11 10 8 7 5 4 0

Y Register 1000 i 111 010 REG

15 12 11 10 8 7 5 4 3 2 0

Indirect Long
Immediate (MSW) 1000 i 111 000 mod rN

15 0

Indirect Long
Immediate (LSW) long immediate

15 12 11 10 8 7 6 5 4 3 2 1 0

(rJ), (rI) 1101 i 111 0 jj ii w qq
7-74 Instruction Set

MAASU
MAASU Multiply Signed by Unsigned and Accumulate Aligned Previous
Product

Flags

Cycles

Example maasu (r4)+, (r0)-, a1

Before Execution:

After Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Indirect 1 1

Register 1 1

(rJ), (rI) 1 1

Long Immediate 2 2

(r4): FF20 (r0): 0200

a1: 0 4350 FFE3 p: 2345 6789

a1: 0 4351 466D

p: FFFE 4000
Instruction Set List 7-75

MAC
MAC Multiply and Accumulate Previous Product

Opcode

Syntax mac operand1, operand2, ai

Description The previous product (p) is sign-extended to 36 bits and shifted as defined
in the PS field in ST1. The shifted value is added to ai. The result is stored
in ai. The signed operands are multiplied together and stored in p.

Operation ai + shifted p → ai
operand1 → y1

operand2 → x
signed y * signed x → p

operand1, operand2: y, short direct address
y, (rN)
y, REG 2

(rJ), (rI) 3

(rN), ##long immediate

1. y → y means that y retains its value
2. The REG cannot be ai, bi, or p.
3. The multiplication in mac (rJ), (rI), ai is between Y-Memory and X-Memory

only, where rJ points to Y-Memory, rI points to X-Memory.

15 12 11 10 9 8 7 0

Y Direct 1110 i 01 0 direct

15 12 11 10 8 7 5 4 3 2 0

Y Indirect 1000 i 010 001 mod rN

15 12 11 10 8 7 5 4 0

Y Register 1000 i 010 010 REG

15 12 11 10 8 7 5 4 3 2 0

Long Immediate
(MSW) 1000 i 010 000 mod rN

15 0

Long Immediate
(LSW) long immediate

15 12 11 10 8 7 6 5 4 3 2 1 0

(rJ), (rI) 1101 i 010 0 jj ii w qq
7-76 Instruction Set

MAC
MAC Multiply and Accumulate Previous Product

Flags

Cycles

Example mac (r4)+, (r0)-, a1

Before Execution:

After Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Direct 1 1

Indirect 1 1

Register 1 1

(rJ), (rI) 1 1

Long Immediate 2 2

(r4): 01AD (r0): 1980

a1: 0 4304 1768 p: 0000 8000

p: 002A BB80

a1: 0 42C8 0CB4
Instruction Set List 7-77

MACSU
MACSU Multiply Signed by Unsigned and Accumulate Previous Product

Opcode

Syntax macsu operand1, operand2, ai

Description The previous product (p) is sign-extended to 36 bits and shifted as
defined in the PS field in ST1. The shifted value is added to ai. The result
is stored in ai. The signed operand1 is multiplied with the unsigned
operand2, and the result is stored in p.

15 12 11 10 9 8 7 0

Y Direct 1110 i 11 0 direct

15 12 11 10 8 7 5 4 3 2 0

Y Indirect 1000 i 110 001 mod rN

15 12 11 10 8 7 5 4 0

Y Register 1000 i 110 010 REG

15 12 11 10 8 7 5 4 3 2 0

Long Immediate
(MSW) 1000 i 110 000 mod rN

15 0

Long Immediate
(LSW) long immediate

15 12 11 10 8 7 6 5 4 3 2 1 0

(rJ), (rI) 1101 i 110 0 jj ii w qq
7-78 Instruction Set

MACSU
MACSU Multiply Signed by Unsigned and Accumulate Previous Product

Operation ai + shifted p → ai
operand1 → y1

operand2 → x
signed y * unsigned x → p

operand1, operand2: y, short direct address
y, (rN)
y, REG 2

(rJ), (rI) 3

(rN), ##long immediate

1. y → y means that y retains its value.
2. The REG cannot be ai, bi, or p.
3. The multiplication in macsu (rJ), (rI), ai is between Y-Memory and X-Memory

only, where rJ points to Y-Memory, rI points to X-Memory.

Flags

Cycles

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Direct 1 1

Indirect 1 1

Register 1 1

(rJ), (rI) 1 1

Long Immediate 2 2
Instruction Set List 7-79

MACSU
MACSU Multiply Signed by Unsigned and Accumulate Previous Product

Example macsu (r4)+, (r0)-, a1

Before Execution:

After Execution:

(r4): FF26 (r0): 2341

a1: 0 4303 9768 p: 0000 4000

p: FFE1 FAA6

a1: 0 4304 1768
7-80 Instruction Set

MACUS
MACUS Multiply Unsigned by Signed and Accumulate Previous Product

Opcode

Syntax macus operand1, operand2, ai

Description The previous product (p) is sign-extended to 36 bits and shifted as
defined in the PS field in ST1. The shifted value is added to ai. The result
is stored in ai. The unsigned operand1 is multiplied with the signed
operand2, and the result is stored in p.

Operation ai + shifted p → ai
operand1 → y1

operand2 → x
unsigned y * signed x → p

operand1, operand2: y, (rN)
y, REG 2

(rJ), (rI) 3

(rN), ##long immediate

1. y → y means that y retains its value.
2. The REG cannot be ai, bi, or p.
3. The multiplication in macus (rJ), (rI), ai is between Y-Memory and X-Memory

only, where rJ points to Y-Memory, rI points to X-Memory.

15 12 11 10 8 7 5 4 3 2 0

Y Indirect 1000 i 011 001 mod rN

15 12 11 10 8 7 5 4 0

Y Register 1000 i 011 010 REG

15 12 11 10 8 7 5 4 3 2 0

Long Immediate
(MSW) 1000 i 011 000 mod rN

15 0

Long Immediate
(LSW) long immediate

15 12 11 10 8 7 6 5 4 3 2 1 0

(rJ),(rI) 1101 i 011 0 jj ii w qq
Instruction Set List 7-81

MACUS
MACUS Multiply Unsigned by Signed and Accumulate Previous Product

Flags

Cycles

Example macus (r4)+, (r1)-, a1

Before Execution:

After Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Indirect 1 1

Register 1 1

(rJ), (rI) 1 1

Long Immediate 2 2

(r4): FF26 (r0): 2341

a1: 0 42C8 0CB4 p: 002A BB80

a1: 0 431D 83B4

p: 2322 FAA6
7-82 Instruction Set

MACUU
MACUU Multiply Unsigned by Unsigned and Accumulate Previous Product

Opcode

Syntax macuu operand1, operand2, ai

Description The previous product (p) is sign-extended to 36 bits and shifted as
defined in the PS field in ST1. The shifted value is added to ai. The result
is stored in ai. The unsigned operands are multiplied together, and the
result is stored in p.

After using this instruction, the p register cannot be reconstructed. During
an interrupt service routine that uses the p register, the p register should
be saved before it is used and restored before returning from the
interrupt. However, the p register cannot be reconstructed after a macuu
instruction; it is, therefore, recommended that a dint instruction be put
before the macuu instruction and an eint instruction be placed after the
instruction which uses the result in the p register (the unsigned product).

The instruction that uses the p register or the ‘shifted p register’ as a
source operand after a macuu instruction uses the unsigned result in p
zero extended into 36 bits, and then shifted as defined in the PS field.
This behavior is in effect until a new signed product is generated or a
new value is written to ph.

15 12 11 10 8 7 5 4 3 2 0

Y Indirect 1000 i 101 001 mod rN

15 12 11 10 8 7 5 4 0

Y Register 1000 i 101 010 REG

15 12 11 10 8 7 5 4 3 2 0

Long Immediate
(MSW) 1000 i 101 000 mod rN

15 0

Long Immediate
(LSW) long immediate

15 12 11 10 8 7 6 5 4 3 2 1 0

(rJ), (rI) 1101 i 101 0 jj ii w qq
Instruction Set List 7-83

MACUU
MACUU Multiply Unsigned by Unsigned and Accumulate Previous Product

Operation ai + shifted p → ai
operand1 → y1

operand2 → x
unsigned y * unsigned x → p

operand1, operand2: y, (rN)
y, REG 2

(rJ), (rI) 3

(rN), ##long immediate

1. y → y means that y retains its value.
2. The REG cannot be ai, bi, or p.
3. The multiplication in macuu (rJ), (rI), ai is between X-Memory and Y-Memory

only, where rJ points to Y-Memory, rI points to X-Memory.

Flags

Cycles

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Indirect 1 1

Register 1 1

(rJ), (rI) 1 1

Long Immediate 2 2
7-84 Instruction Set

MACUU
MACUU Multiply Unsigned by Unsigned and Accumulate Previous Product

Example macuu (r4)+, (r0)-, a1

Before Execution:

After Execution:

(r4): FF20 (r0): 0200

a1: 0 431D 83B4 p: 2322 FAA6

a1: 0 8963 7900 p: 01FE 4000
Instruction Set List 7-85

MAX
MAX Maximum of Two ai Accumulators

Opcode

Syntax max ai, (r0), ge | gt

Description This instruction is used to find the maximal value of the two
A accumulators. If a new maximal value is found, this value is saved in
the defined accumulator (ai) and the r0 pointer value is saved in the
MIXP register. (Note that the MIXP cannot be read by the instruction
following the max instruction). The r0 register is postmodified as specified
in the instruction, regardless of the result of the comparison.

Operation When using ge:

If a i ≥ ai then
ai = a i
mixp = r0

r0 is postmodified

When using gt:

If a i > ai then
ai = a i
mixp = r0

r0 is postmodified

Flags affected

15 10 9 8 7 5 4 3 2 0

max (ge) 100001 0 i 011 mod xxx

15 10 9 8 7 5 4 3 2 0

max (gt) 100001 1 i 011 mod xxx

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
7-86 Instruction Set

MAX
MAX Maximum of Two ai Accumulators

Cycles

Example max a0, (r0), ge

Before Execution:

After Execution: (assuming M=0)

Cycles Words

Max 1 1

a0: 0 0000 001B r0 FF00

a1: 0 040B 2B52 (r0): 0100

a0: 0 040B 2B52 mixp: FF00
Instruction Set List 7-87

MAXD
MAXD Maximum of Data Memory Location and ai Accumulator

Opcode

Syntax maxd ai, (r0), ge | gt

Description This instruction is used for finding the maximal value of a data memory
location pointed to by r0 and one of the A accumulators. In case r0 points
to a larger or equal value than the accumulator, the new maximal value
is transferred to the defined accumulator (ai) and the r0 pointer value is
transferred into the mixp register. (Note that the mixp cannot be read in
the instruction following the maxd instruction). The r0 register is
postmodified as specified in the instruction, regardless of whether the
new maximal value is updated.

Operation When using ge:

if (r0) ≥ ai then
ai = (r0)
mixp = r0

r0 is postmodified

When using gt:

if (r0) > ai then
ai = (r0)
mixp = r0

r0 is postmodified

Flags

Note: M is set when the max value was found and the accumulator and
mixp register were updated; cleared otherwise.

15 10 9 8 7 5 4 3 2 0

maxd (ge) 100000 0 i 011 mod xxx

15 10 9 8 7 5 4 3 2 0

maxd (gt) 100000 1 i 011 mod xxx

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
7-88 Instruction Set

MAXD
MAXD Maximum of Data Memory Location and ai Accumulator

Cycles

Example This example searches for the maximum value in a data array pointed to
by r0, stores the maximum value in a0, and stores its pointer in mixp.

moda clr, a0
rep #7

maxd a0, (r0)+, ge
nop
mov mixp, r1

The array is as follows:

Before Execution:

After Execution:

Cycles Words

maxd 1 1

Array Address Contents

FF00 0x0240

FF01 0x0053

FF02 0xAACC

FF03 0x08C7

FF04 0x1CCC

FF05 0x0020

FF06 0x0100

FF07 0x2540

a0: 0 0000 0000 r0: FF00

a0: 0 0000 2540 mixp: FF07
Instruction Set List 7-89

MIN
MIN Minimum of Two ai Accumulators

Opcode

Syntax min ai, (r0), le | lt

Description This instruction is used to find the minimal value of the two A
accumulators. If a new minimal value is found the new value is saved in
the defined accumulator ai and the r0 pointer value saved in the mixp
register. The r0 register is postmodified as specified at the instruction,
regardless of the result of the comparison of the accumulators.

Operation When using le:

If a i ≤ ai then
ai = a i
mixp = r0

r0 is postmodified

When using lt:

If a i < ai then
ai = a i
mixp = r0

r0 is postmodified

Flags

Note: M is set when the min value was found and the accumulator and
mixp register were updated; cleared otherwise.

15 11 10 9 8 7 5 4 3 2 0

min (le) 10001 x 0 i 011 mod xxx

15 11 10 9 8 7 5 4 3 2 0

min (lt) 10001 x 1 i 011 mod xxx

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
7-90 Instruction Set

MIN
MIN Minimum of Two ai Accumulators

Cycles

Example min a0, (r0), lt

Before Execution:

After Execution: (assuming M=1)

In this example, a0 was the minimum value, so no changes occurred.

Cycles Words

min 1 1

a0: 0 0000 3907 a1: 0 5128 0338

a0: 0 0000 3907 a1: 0 5128 0338
Instruction Set List 7-91

MODA
MODA Modify ai Accumulator Conditionally

Opcode

func: 0000 shr
0001 shr4
0010 shl
0011 shl4
0100 ror
0101 rol
0110 clr
0111 reserved
1000 not
1001 neg
1010 rnd
1011 pacr
1100 clrr
1101 inc
1110 dec
1111 copy

Syntax moda func, ai [,cond]

The assembler syntax permits omitting the moda; for example, shr a0 is
equivalent to moda shr, a0 .

Description The contents of ai are modified according to func , and the flags are set
accordingly. If cond is specified, ai is modified only when the condition
is true and is unaffected when false.

15 13 12 8 7 4 3 0

moda 011 i 0111 func cond
7-92 Instruction Set

MODA
MODA Modify ai Accumulator Conditionally

Operation func: shr ai = ai >> 1
shl ai = ai << 1
shr4 ai = ai >> 4
shl4 ai = ai << 4
ror rotate ai right through carry
rol rotate ai left through carry
clr ai = 0
copy ai = ai
neg ai = -ai
not ai = not (ai)
rnd Round upper 20 bits of the ai

ai = ai+0x8000
pacr ai = shifted p 1 + 0x8000
clrr ai = 0x8000
inc ai = ai + 1
dec ai = ai - 1

1. Shifted p register means that the p register is sign-extended to 36 bits and
then shifted as defined in the PS field, status register ST1.

Flags affected Arithmetic Shift: shr, shl, shr4, and shl4

An arithmetic shift is performed when the S status bit in status register
ST2 is cleared.

The C flag is set according to the last bit shifted out of the operand
(shr = bit 0, shr4 = bit 3, shl = bit 35, shl4 = bit 32).

For shl/shl4, the V flag is cleared if the operand being shifted could be
represented in 35/31 bits for shl/shl4, respectively; set otherwise. For
shr/shr4, the V flag is always cleared.

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
Instruction Set List 7-93

MODA
MODA Modify ai Accumulator Conditionally

Flags affected
(cont.)

Logical Shift:

A logical shift is performed when the S status bit in status register ST2
is set.

The C flag is set according to the last bit shifted out of the operand
(shr = bit 0, shr4 = bit 3, shl = bit 35, shl4 = bit 32).

ror

C- Set according to the LSB (bit 0) shifted out of the operand.

rol

C- Set according to the MSB (bit 35) shifted out of the operand.

not, copy, clr, clrr

neg, rnd, pacr

inc, dec

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
7-94 Instruction Set

MODA
MODA Modify ai Accumulator Conditionally

Cycles

Example In this example, assume the M flag in ST0 is set.

moda neg, a1, lt

Before Execution:

After Execution:

Cycles Words

moda 1 1

a1: 0 0013 3A05

a1: 0 FFEC C5FB
Instruction Set List 7-95

MODB
MODB Modify bi Accumulator Conditionally

Opcode

func: 000 shr
001 shr4
010 shl
011 shl4
100 ror
101 rol
110 clr
111 reserved

Syntax modb func, bi [,cond] or func bX [, cond]

The assembler syntax permits omitting the modb; e.g. shr b0 is
equivalent to modb shr, b0 .

Description The contents of bi are modified according to func , and the flags are set
accordingly. If cond is specified, bi is modified only when the condition is
true and is unaffected when false. Refer to Section 7.1.2, “Number
Representation,” and Section 4.4, “Status Registers,” for more
information.

Operation func: shr bi = bi >> 1
shl bi = bi << 1
shr4 bi = bi >> 4
shl4 bi = bi << 4
ror rotate bi right through carry
rol rotate bi left through carry
clr bi = 0

15 13 12 11 8 7 6 4 3 0

modb 011 i 1111 x func cond
7-96 Instruction Set

MODB
MODB Modify bi Accumulator Conditionally

Flags Arithmetic Shift: shr, shl, shr4, and shl4

An arithmetic shift is performed when the S status bit in status register
ST2 is cleared.

The C flag is set according to the last bit shifted out of the operand
(shr = bit 0, shr4 = bit 3, shl = bit 35, shl4 = bit 32).

For shl and shl4, the V flag is cleared if the operand being shifted could
be represented in 35/31 bits for shl/shl4, respectively; V flag is set
otherwise.

The flags are always cleared with the shr and shrf instructions.

Logical Shift:

Logical shift is performed when the S status bit in status register ST2 is set.

shr/shr4/shl/shl4

The C flag is set according to the last bit shifted out of the operand
(shr = bit 0, shr4 = bit 3, shl = bit 35, shl4 = bit 32).

Rotate right: ror

The C flag is set according to the LSB (bit 0) shifted out of the operand.

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
Instruction Set List 7-97

MODB
MODB Modify bi Accumulator Conditionally

Flags (Cont.) Rotate left: rol

The C flag is set according to the MSB (bit 35) shifted out of the operand

Clear: clr

Cycles

Example In this example, assume the M flag in ST0 and the S flag in ST2 are set
(logical shift mode selected).

modb neg, b1, lt

Before Execution:

After Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

modb 1 1

b1: 0 4860 FE30

b1: 4 860F E300
7-98 Instruction Set

MODR
MODR Modify rN

Opcode

Syntax modr (rN)[+|-|+s] [,dmod]

Description The contents of rN are modified, and the flags are set accordingly. If dmod
is specified, rN is modified based on the corresponding Mn bit.

Operation When using modr (rN):
rN is modified, influenced by the corresponding Mn bit.

When using modr (rN), dmod:
rN is modified with modulo disabled.

This instruction can also be used for loop control, the R bit providing an
indication that the end of the loop has been reached:

add:
.
modr (r0) -
brr add, nr

Flags

R flag is set if the 16-bit rN register is zero; otherwise it is cleared.

Cycles

15 7 6 5 4 3 2 0

modr (modulo
enabled) 000000001 x 0 mod rN

15 7 6 5 4 3 2 0

modr (modulo
disabled) 000000001 x 1 mod rN

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Modr 1 1
Instruction Set List 7-99

MODR
MODR Modify rN

Example In this example, r3 is postincremented by one.

modr (r3)+

Before Execution:

After Execution:

r3: FF00

r3: FF01
7-100 Instruction Set

MOV
MOV Move Data

Opcode
15 10 9 5 4 0

register, register 010110 REG reg

15 12 11 10 9 6 5 4 3 2 0

ABL, dvm 1101 ABL 1010 x 11 xxx

15 12 11 10 9 6 5 4 3 2 0

ABL, x 1101 ABL 1011 x 11 xxx

15 12 11 10 9 7 6 5 4 3 2 0

ab, AB 1101 ab 101 AB 10 xxx

15 6 5 4 0

register, mixp 0101111010 x REG

15 10 9 5 4 3 2 0

register, indirect 000110 REG mod rN

15 5 4 0

mixp, register 01000111110 REG

15 9 8 7 6 5 4 3 2 1 0

repc, ab 1101010 x 1 AB 10 x 00

15 6 5 4 0

register, icr 0100111111 x REG

15 9 8 7 6 5 4 2 1 0

dvm, ab 1101010 x 1 AB 101 xx
Instruction Set List 7-101

MOV
MOV Move Data

Opcode (Cont.)
15 9 8 7 6 5 4 3 2 1 0

icr, ab 1101010 x 1 AB 10 x 10

15 9 8 7 6 5 4 3 2 1 0

x, ab 1101010 x 1 AB 10 x 11

15 10 9 5 4 3 2 0

indirect, register 000111 REG mod rN

15 5 4 0

(sp), register 01000111111 REG

15 12 11 9 8 7 0

indirect, direct 0010 rN* 0 direct

15 12 11 10 9 8 7 0

ail, direct 0011 1 i 0 0 direct

15 12 11 10 9 8 7 0

aih, direct 0011 1 i 1 0 direct

15 12 11 10 9 8 7 0

bil, direct 0011 0 i 0 0 direct

15 12 11 10 9 8 7 0

bih, direct 0011 0 i 1 0 direct

15 6 5 4 0

register, bi 010111011 i REG
7-102 Instruction Set

MOV
MOV Move Data

Opcode (Cont.)
15 9 8 7 6 5 4 3 2 0

indirect, bi 1001100 i 11 x mod rN

15 8 7 0

sv, direct 01111101 direct

15 13 12 10 9 8 7 0

direct, indirect 011 rN* 00 direct

15 13 12 11 10 8 7 0

direct, ai 011 1 i 001 direct

15 13 12 11 10 8 7 0

direct, bi 011 0 i 001 direct

15 13 12 11 10 9 8 7 0

direct, bil 011 0 i 0 10 direct

15 13 12 11 10 9 8 7 0

direct, ail 011 1 i 0 10 direct

15 13 12 11 10 9 8 7 0

direct, bih 011 0 i 1 10 direct

15 13 12 11 10 9 8 7 0

direct, aih 011 1 i 1 10 direct

15 13 12 11 8 7 0

direct, aih [eu] 011 i 0101 direct

15 8 7 0

direct, sv 01101101 direct
Instruction Set List 7-103

MOV
MOV Move Data

Opcode (Cont.)
15 9 8 7 5 4 0

long immediate, bi
(MSW) 0101111 i 001 xxxxx

15 0

long immediate, bi
(LSW) long immediate

15 9 8 7 5 4 0

long immediate,
register (MSW) 0101111 x 000 REG

15 0

long immediate,
register (LSW) long immediate

15 9 8 7 2 1 0

long direct, ai
(MSW) 1101010 i 101110 xx

15 0

long direct, ai
(LSW) long direct

15 13 12 11 8 7 0

short
immediate, ail 001 i 0001 short immediate

15 13 12 11 8 7 0

short
immediate, aih 001 i 0101 short immediate

15 13 12 11 10 9 8 7 0

direct, bih 011 0 i 1 10 direct

15 13 12 11 10 9 8 7 0

direct, aih 011 1 i 1 10 direct

15 9 8 7 2 1 0

ail, long direct
(MSW) 1101010 i 101111 xx
7-104 Instruction Set

MOV
MOV Move Data

Opcode (Cont.)
15 0

ail, long direct
(LSW) long direct

15 9 8 7 6 0

short index, ai 1101100 i 1 offset

15 9 8 7 2 1 0

long index, ai
(MSW) 1101010 i 100110 xx

15 0

long index, ai
(LSW) long index

15 9 8 7 6 0

ail, short index 1101110 i 1 offset

15 9 8 7 2 1 0

ail, long index
(MSW) 1101010 i 100111 xx

15 0

ail, long index
(LSW) long index

15 13 12 10 9 8 7 0

short
immediate, indirect 001 rN* 11 short immediate

15 13 12 10 9 8 7 0

short
immediate, extx 001 ext 01 short immediate

15 8 7 0

short
immediate, sv 00000101 short immediate

15 5 4 0

short
immediate, icr 0100111110 short immediate
Instruction Set List 7-105

MOV
MOV Move Data

Syntax MOV soperand, doperand

Description Move the contents of the specified source operand, soperand , to the
specified destination operand, doperand .

Operation soperand → doperand

soperand, doperand: REG, REG 1,2,3,4

REG, (rN) 1,2,5

(rN), REG 4,5

mixp, REG 4,6

REG, mixp 1,2,6

icr, ab
x, ab
dvm, ab
repc, ab

soperand, doperand: ail, x
bil, x
ail, dvm
bil, dvm

rN, direct address
ail, direct address
aih, direct address
bil, direct address
bih, direct address
y, direct address
rb, direct address
sv, direct address

direct address, rN
direct address, ai
direct address, ail
direct address, aih [,eu] 10

direct address, bi
direct address, bil
direct address, bih
direct address, y
direct address, rb
direct address, sv
[##direct address], ai
ail, [##direct address]
(sp), REG 4,6

(rb+#offset7), ai
7-106 Instruction Set

MOV
MOV Move Data

Operation
(Cont.)

(rb+##offset), ai
ail, (rb+#offset7)
ail, (rb+##offset)

##long immediate, REG 4

#unsigned short immediate, ail
#signed short immediate, aih
#signed short immediate, rN 9

#signed short immediate, y 9

#signed short immediate, rb 9

#signed short immediate, extX 9

#signed short immediate, sv 9

#signed immediate (5 bits), icr 7,8

1. The 32-bit P register can be transferred only to ai (mov p, ai). ph is a write-
only register, therefore soperand cannot be ph.

2. A 36-bit accumulator can be a soperand only with a mov ab, ab instruction.
3. With mov reg, reg , the soperand cannot be the same as the doperand.
4. When the doperand REG is the pc register, two nop instructions must be

placed after the mov soperand, pc instruction, except for the instruction mov
##long immediate, pc where only one nop should be inserted.

5. It is not permitted to move data from data address pointed by one of the
indirect registers to the same indirect register (and vice versa) with post-
modification.

6. The REG cannot be bi.
7. Enable or disable of context switching (by a write to icr) takes effect after

the next sequential instruction (e.g. when the user enables context switching
for a specific interrupt, if the same interrupt is accepted immediately after the
write to icr , it will not activate the context switching mechanism).

8. A mov soperand , icr cannot be followed by a bkrep instruction.
9. Loading the doperand with a short immediate number causes sign-extension.
10. The eu field is an optional field. eu = accumulator extension is unaffected.

Refer to the following table.

Instruction Fields
Accumulator Fields Contents

after the Instruction

Accumulator eu Extension Bits 16 MSB aih/bih 16 LSB ail/bil

ai/bi - sign-extended sign-extended DATA

ail/bil - clear clear DATA

aih/bih - sign-extended DATA clear

aih eu unaffected DATA clear
Instruction Set List 7-107

MOV
MOV Move Data

Operation
(Cont.)

Conventions:

♦ The instruction at program memory address 0x0100: mov pc, ram

After execution: (ram) = 0x0101.

♦ mov (r0), r0:

Before Execution:

After Execution:

Flags When soperand is ail, aih, bil or bih:

When doperand is ai or bi:

If doperand is st0, st0 (including the flags) accepts the transferred data.
There is no effect when doperand is not ac, bc, or st0, or when soperand
is not ail , aih , bil , or bih .

r0: 0x20 RAM Address: 0x1000

r0: 0x1000 RAM Address: 0x1000

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
7-108 Instruction Set

MOV
MOV Move Data

Cycles

Cycles Words

register, register 1 1

register, (rN) 1 1

(rN), register 1 1

mixp, register 1 1

register, mixp 1 1

icr, ab 1 1

x, ab 1 1

ab, AB 1 1

dvm, ab 1 1

repc, ab 1 1

ail, x 1 1

bil, x 1 1

ail, dvm 1 1

bil, dvm 1 1

register, icr 1 1

rN*, direct 1 1

ail, direct 1 1

aih, direct 1 1

bil, direct 1 1

bih, direct 1 1

sv, direct 1 1

direct, rN* 1 1

direct, ai 1 1

direct, ail 1 1
Instruction Set List 7-109

MOV
MOV Move Data

Cycles (Cont.)

Cycles Words

direct, aih 1 1

direct, bi 1 1

direct, bil 1 1

direct, bih 1 1

direct, aih, eu 1 1

direct, sv 1 1

long direct, ai 2 2

ail, long direct 2 2

(sp), register 1 1

short index, ai 1 1

long index, ai 2 2

ail, short index 1 1

ail, long index 2 2

long immediate, register 2 2

short immediate, ail 1 1

short immediate, aih 1 1

short immediate, rN* 1 1

short immediate, extX 1 1

short, sv 1 1

short immediate (5 bits), icr 1 1

register, bi 1 1

(rN), bi 1 1

long immediate, bi 2 2
7-110 Instruction Set

MOV
MOV Move Data

Example mov ##0x4560, a0

Before Execution:

After Execution:

This operation affects the ALU flags in the ST0 Status Register.

a0: 0 4500 6780

a0: 0 0000 4560
Instruction Set List 7-111

MOVD
MOVD Move from Data Memory into Program Memory

Opcode

Syntax movd (rI), (rJ)

Description Move a word from data memory location pointed to by rI into program
memory location pointed to by rJ.

Operation rI - points to data memory location
rJ 1 - points to program memory location

(rI) → (rJ)

(rI) is postmodified
(rJ) is postmodified

1. The rJ register cannot point to the movd instruction address or to (movd
address) + 1.

Flags affected This instruction does not affect the flags.

Cycles

Example movd (r0)+, (r4)+

In this example, r0 points to a location in data memory, and r4 points to a
location in program memory. Both r0 and r4 are postincremented by one.

Before Execution:

After Execution:

15 7 6 5 4 3 2 1 0

(rI), (rJ) 010111111 jj ii w qq

Cycles Words

(rI), (rJ) 4 1

(r4): 0000 (r0): 1234

(r4): 1234 (r0): 1234
7-112 Instruction Set

MOVP
MOVP Move from Program Memory into Data Memory

Opcode

Syntax movp soperand, doperand

Description This instruction is used to move a word from program memory location
pointed to by soperand into a data memory location pointed to by
doperand or into REG. When using ai as soperand , the address is
defined by ai-accumulator-low.

Operation soperand points to program memory location
soperand → doperand
soperand, doperand: (ail), REG 1,2

(rN), (rI)

1. When the operand REG is the pc register, two nop instructions must be
placed after the movp (ai), pc instruction.

2. The REG cannot be bi.

Flags affected When doperand is not an A accumulator or st0: this instruction does
not affect the flags.

When doperand is an A accumulator:

When doperand is st0:

15 6 5 4 0

(ai), register 0000000001 i REG

15 9 8 7 6 5 4 3 2 0

(rI) 0000011 ii qq mod rN

15 12 11 10 9 8 7 6 5 4 3 2 1 0

ac: A0E Z M N V C E L R IM1 IM0 IE SAT

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
Instruction Set List 7-113

MOVP
MOVP Move from Program Memory into Data Memory

Cycles

Example movp (r0)+, (r3)+

In this example, r0 points to a location in program memory, and r3 points
to a location in data memory. Both r0 and r3 are postincremented by one.

Before Execution:

After Execution:

Cycles Words

(ai), register 3 1

(rN), (rI) 3 1

(r3): 0000 (r0): 1234

(r3): 1234 (r0): 1234
7-114 Instruction Set

MOVR
MOVR Move and Round

Opcode

Syntax movr operand, ai

Description The value stored in the operand is rounded and loaded into the ai .

Operation operand + 0x8000 → ai

operand: REG 1

(rN)

1. The REG cannot be bi.

Flags

Cycles

15 9 8 7 5 4 3 2 0

Indirect 1001110 i 111 mod rN

15 9 8 7 5 4 0

Register 1001110 i 110 REG

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

indirect 1 1

register 1 1
Instruction Set List 7-115

MOVR
MOVR Move and Round

Example movr (r0)+, a0

Before Execution:

After Execution:

a0: 0 0000 3D03 (r0): 5678

a0: 0 0000 D678 (r0): 5678
7-116 Instruction Set

MOVS
MOVS Move and Shift according to Shift Value Register

Opcode

Syntax movs operand, ab

Description The value stored in the operand is shifted by the amount stored in sv and
loaded into ab. If the value in the sv is positive, the left shift is executed.
If the value in the sv is negative, right shift is executed. If S flag in the
ST2 Status Register is set, the operation performs a logical shift. If
cleared, it performs an arithmetic shift.

Operation If 0 < sv ≤ 36 then
operand << sv → ab

If -36 ≤ sv < 0 then
operand >> |sv| → ab

If sv = 0 then
operand → ab

operand 2: REG1

(rN)
direct address

1. The REG cannot be p.
2. When operand is ab, the assembler translates the instruction into a shfc :

shfc a0, b0, true .

15 13 12 11 10 8 7 0

Short Direct 011 AB 011 direct

15 7 6 5 4 3 2 0

Indirect 000000011 AB mod rN

15 7 6 5 4 0

Register 000000010 AB REG
Instruction Set List 7-117

MOVS
MOVS Move and Shift according to Shift Value Register

Flags Arithmetic Shift:

If -36 ≤ sv ≤ 0 (shift right), then the V flag is cleared. If 0 < sv < 36 (shift
left) and the operand before being shifted can be represented in
(36 –sv) bits then V is cleared. If sv = 36 (shift left) and the operand ≠ 0
then V is set.

Logical Shift:

Note: If sv = 0, the C flag is cleared.

Cycles

Example This example assumes sv = 8.

movs (r4), a0

Before Execution:

After Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Direct 1 1

Indirect 1 1

Register 1 1

a0: 0 0000 3F01 (r4): 001E

a0: 0 0000 1E00 (r0): 001E
7-118 Instruction Set

MOVSI
MOVSI Move and Shift according to Immediate Shift Value

Opcode

Syntax movsi operand, ab, #signed 5-bit immediate

Description The value stored in the operand is shifted by the immediate value and
stored into the ab accumulator. If the immediate value is positive, a left
shift is executed. If the immediate value is negative, a right shift is
executed. If the S flag in the ST2 Status Register is set, the operation is
a logical shift. If S is cleared, an arithmetic shift is performed.

Operation The operand is sign-extended to 36 bits
if 0 < #immediate ≤ 15 then

operand << #immediate → ab

if -16 ≤ #immediate < 0 then
operand >> #|immediate| → ab

iF #immediate = 0 then
operand → ab

operand: (rN)
y
rb

Flags Arithmetic Shift:

15 12 11 9 8 7 6 5 4 0

Indirect 0100 rN* 01 AB immediate

15 12 11 9 8 7 6 5 4 0

y

15 12 11 9 8 7 6 5 4 0

rb

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
Instruction Set List 7-119

MOVSI
MOVSI Move and Shift according to Immediate Shift Value

Flags (Cont.) Logical Shift:

Note: If #immediate = 0 , the C flag is cleared.

Cycles

Example This example assumes that the S flag in ST2 is cleared.

movsi r4, a0, #8

Before Execution:

After Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Indirect, ab 1 1

a0: 0 0000 3E02 r4: FF00

a0: F FFFF 0000 r4: FF00
7-120 Instruction Set

MPY
MPY Multiply

Opcode

Syntax mpy operand1, operand2

Description This instruction multiplies signed operand1 by signed operand2 and
stores the result in p register. The operand1 is loaded into y input
register with sign extension, and the operand2 is loaded into x multiplier
input register with sign extension.

15 12 11 10 9 8 7 0

Y Direct 1110 i 00 0 direct

15 12 11 10 8 7 5 4 3 2 0

Y Indirect 1000 i 000 001 mod rN

15 12 11 10 8 7 5 4 0

Y Register 1000 i 000 010 REG

15 12 11 10 8 7 5 4 3 2 0

Indirect Long
Immediate (MSW) 1000 i 000 000 mod rN

15 0

Indirect Long
Immediate (LSW) long immediate

15 12 11 10 8 7 6 5 4 3 2 1 0

(rJ), (rI) 1101 i 000 0 jj ii w qq
Instruction Set List 7-121

MPY
MPY Multiply

Operation operand1 → y1

operand2 → x
signed y * signed x → p

operand1, operand2: y, direct address
y, (rN)
y, REG 2

(rJ), (rI) 3

(rN), ##long immediate

1. y → y means that y retains its value.
2. The REG cannot be ai, bi, or p.
3. The multiplication in mpy (rJ), (rI) is between X-Memory and Y-Memory only,

where rJ points to Y-Memory, rI points to X-Memory.

Flags

This instruction does not affect the flags.

Cycles

Example mpy y, (r4)+

Before Execution:

After Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Direct 1 1

Indirect 1 1

Register 1 1

(rJ), (rI) 1 1

Long Immediate 2 2

y: 3709 (r4): 3240

p: 0ACD 8440
7-122 Instruction Set

MPYI
MPYI Multiply Signed Short Immediate

Opcode

Syntax mpyi y, #signed short immediate

Description The immediate value is loaded into the x multiplier input register with sign
extension. This instruction then multiplies the y input register with sign
extension by the x multiplier input register. The result is stored in the
product register.

For PineDSPCore compatibility the assembler syntax permits the use of
mnemonic mpys y, #signed short immediate which is equivalent to
mpyi y, #signed short immediate .

Operation #signed short immediate → x

signed y * signed x → p

Flags

This instruction does not affect the flags.

Cycles

15 8 7 0

Short Immediate 00001000 immediate

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Immediate 1 1
Instruction Set List 7-123

MPYI
MPYI Multiply Signed Short Immediate

Example mpyi y, #0x20

Before Execution:

After Execution:

y: 01AD

p: 0000 35A0
7-124 Instruction Set

MPYS
MPYS Multiply Signed Short Immediate

Opcode

Syntax mpys y, #signed short immediate

Description The immediate value is loaded into the x multiplier input register with sign
extension. This instruction then multiplies the y input register with sign
extension by the x multiplier input register. The result is stored in the
product register.

For PineDSPCore compatibility, the assembler syntax permits the use of
mnemonic mpys y, #signed short immediate , which is equivalent to
mpyi y, #signed short immediate .

Operation #signed short immediate → x

signed y * signed x → p

Flags

This instruction does not affect the flags.

Cycles

15 8 7 0

mpys 00001000 immediate

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Immediate 1 1
Instruction Set List 7-125

MPYS
MPYS Multiply Signed Short Immediate

Example mpys y, #0x20

Before Execution:

After Execution:

y: 01AD

p: 0000 35A0
7-126 Instruction Set

MPYSU
MPYSU Multiply Signed by Unsigned

Opcode

Syntax mpysu operand1, operand2

Description This instruction multiplies signed operand1 by unsigned operand2 and
stores the result in product register. The operand1 is loaded into y input
register with sign extension, and the operand2 is loaded into x multiplier
input register with sign extension.

Operation operand1 → y1

operand2 → x
signed y * unsigned x → p

operand1, operand2: y, (rN)
y, REG 2

(rJ), (rI) 3

(rN), ##long immediate

1. y → y means that y retains its value.
2. The REG cannot be ai, bi, p.
3. The multiplication in mpysu (rJ), (rI) is between X-Memory and Y-Memory

only, where rJ points to Y-Memory, rI points to X-Memory.

15 12 11 10 8 7 5 4 3 2 0

Y Indirect 1000 i 001 001 mod rN

15 12 11 10 8 7 5 4 0

Y Register 1000 i 001 010 REG

15 12 11 10 8 7 5 4 3 2 0

Indirect Long
Immediate (MSW) 1000 i 001 000 mod rN

15 0

Indirect Long
Immediate (LSW) long immediate

15 12 11 10 8 7 6 5 4 3 2 1 0

(rJ), (rI) 1101 i 001 0 jj ii w qq
Instruction Set List 7-127

MPYSU
MPYSU Multiply Signed by Unsigned

Flags

This instruction does not affect the flags.

Cycles

Example mpysu y, (r4)+

Before Execution:

After Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Indirect 1 1

Register 1 1

(rJ), (rI) 1 1

Long Immediate 2 2

y: 3F01 (r4): 3240

p: 0C5D F240
7-128 Instruction Set

MSU
MSU Multiply and Subtract Previous Product

Opcode

Syntax msu operand1, operand2, ai

Description The previous product (p) is sign-extended to 36 bits and shifted as
defined in the PS field in ST1. The shifted value is subtracted from ai.
The result is stored in ai. The signed operands are multiplied together
and stored in p.

15 13 12 9 8 7 0

Direct 101 1000 i direct

15 13 12 9 8 7 5 4 3 2 0

Indirect 100 1000 i 100 mod rN

15 13 12 9 8 7 5 4 0

Register 100 1000 i 101 REG

15 9 8 7 6 5 4 3 2 1 0

(rJ), (rI) 1101000 i 1 jj ii w qq

15 9 8 7 6 5 4 3 2 0

Indirect Long
Immediate (LSW) 1001000 i 11 x mod rN

15 0

Indirect Long
Immediate (MSW) long immediate
Instruction Set List 7-129

MSU
MSU Multiply and Subtract Previous Product

Operation ai - shifted p → ai
operand1 → y1

operand2 → x
signed y * signed x → p

operand1, operand2: y, direct address
y, (rN)
y, REG 2

(rJ), (rI) 3

(rN), ##long immediate

1. y → y means that y retains its value.
2. The REG cannot be ai, bi, or p.
3. The multiplication in msu (rJ), (rI), ai is between X-Memory and Y-Memory

only, where rJ points to Y-Memory, rI points to X-Memory.

Flags

Cycles

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

y, Direct 1 1

y, Indirect 1 1

y, Register 1 1

(rJ), (rI) 1 1

Long Immediate 2 2
7-130 Instruction Set

MSU
MSU Multiply and Subtract Previous Product

Example msu (r4)+, (r0)-, a1

Before Execution:

After Execution:

(r0): 01AD (r4): 1980

a1: 0 0001 8000 p: 01FE 4000

a1: F FE03 4000

x: 01AD y: 1980

p: 002A BB80
Instruction Set List 7-131

NEG
NEG Two’s Complement of A Accumulator

Opcode

Syntax neg ai [, cond]

Description Negate A accumulator.

Operation ai = -ai

Flags affected

Example neg a1

Before Execution:

After Execution:

15 13 12 8 7 4 3 0

neg 011 i 0111 1001 cond

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

a1: 0 0013 3A05

a1: F FFEC C5FB
7-132 Instruction Set

NOP

Chapter 7 Instruction Set
Instruction Set List
NOP No Operation

Opcode

Syntax nop

Description No operation occurs.

Operation nop No operation

Flags

This instruction does not affect the flags.

Cycles

15 5 4 0

nop 00000000000 xxxxx

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

nop 1 1
Instruction Set List 7-133

NORM
NORM Normalize

Opcode

Syntax norm ai, (rN)

Description This instruction normalizes a signed number in ai by evaluating the N flag
in ST1 each time norm is executed. If N = 0, rN is modified as specified
to generate the magnitude of the exponent. It is assumed that rN and N
are initialized before normalization begins.

Multiple executions of norm in conjunction with rep and brr may be
required to completely normalize a value in ai.

Normalization can be also performed with exp and shift operations.

The following code examples may be used to normalize a signed value
in ai:

Option 1:
rep #n
 norm a0, (r0)+

In this example the N flag is set when normalization is complete and no
operation is performed for the remainder of the repeat loop.

Option 2:
nrm: norm a0, (r0)+

brr nrm, nn

In this example the norm instruction is only repeated while N is not set.

Normalization can also be performed (more efficiently) using the exp and
shift instructions. For more details refer to Section 2.4.2.4,
“Normalization.”

15 9 8 7 6 5 4 3 2 0

norm 1001010 i 11 x mod rN
7-134 Instruction Set

NORM
NORM Normalize

Operation If N = 0 (ai is not normalized)
ai = ai * 2
rN is modified as specified

else
nop
nop

This instruction is used to normalize the signed number at the
accumulator. It affects the rN register.

Flags

The R flag is updated in norm instruction only when rN pointer is
modified.

The C flag is set according to the last bit shifted out of the operand
(bit 35).

Cycles

Example rep #10
norm a0, (r0)+

Before Execution:

After Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

norm 2 1

a0: 0 0134 AEC3 r0: 0000

a0: 0 4D2B B0C0 r0: 0006
Instruction Set List 7-135

NOT
NOT Logical Not

Opcode

Syntax not ai [, cond]

Description Performs logical NOT on specified A accumulator. Also see the moda
instruction on page 7-92.

Operation ai = not(ai)

Flags affected

Example not a1

Before Execution:

After Execution:

15 13 12 8 7 4 3 0

not 011 i 0111 1000 cond

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

a1: 0 0013 3A05

a1: F FFEC C5FA
7-136 Instruction Set

OR
OR Logical Or

Opcode
15 13 12 9 8 7 0

Short Direct 101 0000 i direct

15 12 11 9 8 7 3 2 0

Long Direct
(MSW) 1101 010 i 11111 000

15 0

Long Direct
(LSW) long direct

15 13 12 9 8 7 5 4 3 2 0

Indirect 100 0000 i 100 mod rN

15 13 12 9 8 7 5 4 0

Register 100 0000 i 101 REG

15 12 11 9 8 7 0

Short Immediate 1100 000 i short immediate

15 12 11 9 8 7 5 4 0

Long Immediate
(MSW) 1000 000 i 110 xxxxx

15 0

Long Immediate
(LSW) long immediate

15 12 11 9 8 7 6 0

Short Index 0100 000 i 0 Offset

15 12 11 9 8 7 3 2 0

Long Index
(MSW) 1101 010 i 11011 000

15 0

Long Index
(LSW) long index
Instruction Set List 7-137

OR
OR Logical Or

Syntax or operand, ai

Description The contents of operand are combined with the contents of operand in
a bitwise logical-OR operation. If ai is selected as the operand, ai[35:0]
is logically ORed with operand and the result is stored in ai[35:0]. If p is
selected as the operand, ai[31:0] is logically ORed with operand and the
result is stored in ai[31:0]. If operand is Register or (rN), unsigned short
immediate, long immediate then ai[15:0] ORed with operand is stored in
ai[15:0].

If the operand is one of the A-accumulators or the P register, it is ORed
with the destination accumulator.

If the operand is a 16-bit register or an immediate value, the operand is
zero-extended to form a 36-bit operand, then ORed with the accumulator.
Therefore, this instruction does not affect the upper bits of the
accumulator.

Operation or operand, ai

If operand is ai
ai[35:0] OR ai[35:0] → ai[35:0]

If operand is p
ai[31:0] OR p[31:0] → ai[31:0]

If operand is REG, (rN), unsigned short immediate, long
immediate

ai[15:0] OR operand → ai[15:0]
ai[35:16] → ai[35:16]

operand = REG 1

(rN)
direct address
[##direct address]
#unsigned short
##long immediate
(rb+offset7)
(rb+##offset)

1. The REG cannot be bi.
7-138 Instruction Set

OR
OR Logical Or

Flags

Cycles

Example or (r2)+, a0

Before Execution:

After Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Direct 1 1

Long Direct 2 2

Indirect 1 1

Register 1 1

Long Immediate 2 2

Short Immediate 1 1

Index 1 1

Long index 2 2

a0: 0 7520 0000 (r2): 0020

a0: 0 7520 0020 (r2): 0020
Instruction Set List 7-139

PACR
PACR Product Move and Round to A Accumulator

Opcode

Syntax pacr ai [, cond]

Description Accumulator ai is loaded with the shifted value of the p register and
rounded. If cond is specified, ai is modified only when the condition is
true and is unaffected when it is false.

Operation pacr ai = shifted p 1 + 0x8000

1. Shifted p register means that the p register is sign-extended to 36 bits and
then shifted as defined in the PS field, status register ST1.

Flags affected

15 13 12 11 8 7 4 3 0

pacr 011 i 0111 1011 cond

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
7-140 Instruction Set

POP
POP Pop from Stack into Register

Opcode

Syntax pop REG

Description The top of stack is popped into one of the registers (REG) and the stack
pointer, sp, is post-incremented.

Operation (sp) → REG1,2

sp + 1 → sp

1. REG cannot be sp or bi.
2. A write into p is transferred into p-high (ph).

Flags If REG is not an A accumulator:

If REG is an A accumulator:

Cycles

15 5 4 0

Register 01011110011 REG

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

15 12 11 10 9 8 7 6 5 4 3 2 1 0

ac: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Register 1 1
Instruction Set List 7-141

POP
POP Pop from Stack into Register

Example pop r3

Before Execution:

After Execution:

sp: 0384 r3: 00FA

0x0384: 001B

sp: 0385 r3: 001B
7-142 Instruction Set

PUSH
PUSH Push Register or Long Immediate Value onto Stack

Opcode

Syntax push operand

Description The stack pointer, sp, is predecremented, and the operand is pushed
onto the software stack.

The push instruction cannot follow mov soperand, sp (except for
mov ##long immediate, sp); movp (ail), sp;
addv/subv/set/rst/chng ##long immediate, sp .

Operation sp - 1 → sp
operand → (sp)

operand: REG 1

##long immediate

1. The REG cannot be ai, bi, p, or sp.

Flags affected

If operand is ail , aih , bil , or bih , the L flag is affected; otherwise the
flags are not affected.

15 5 4 0

Register 01011110010 REG

15 6 5 0

Long immediate
(MSW) 0101111101 xxxxxx

15 0

Long immediate
(LSW) long immediate

15 12 11 10 9 8 7 6 5 4 3 2 1 0

A0E Z M N V C E L R IM1 IM0 IE SAT
Instruction Set List 7-143

PUSH
PUSH Push Register or Long Immediate Value onto Stack

Cycles

Example push r3

Before Execution:

After Execution:

Cycles Words

Register 1 1

Long immediate 2 2

sp: 0384 r3: 00FF

sp: 0383 0x383: 00FF
7-144 Instruction Set

REP
REP Repeat Next Instruction

Opcode

Syntax rep operand

Description Rep begins a single word instruction loop that is to be repeated
operand + 1 times. Repetition times are between 1–65536. The repeat
mechanism is interruptible and the interrupt service routine can use
another repeat (nested repeats). The nested repeat is uninterruptible.

The following single word instructions cannot be repeated (most of these
instructions break the pipeline): brr; callr; trap; ret; reti; retd;
retid; rets; rep; calla; mov operand, pc; pop pc; movp (ai), pc;
mov repc, ab .

Rep can be performed inside block-repeat (bkrep).

Operation operand: #unsigned short immediate 1

REG2

1. When using an unsigned short immediate operand the number of repetitions
is between 1 and 256. When transferring the #unsigned short immediate
number into the repc register, it is copied to the low-order 8-bits of the repc.
The high-order 8-bits are zero-extension of the low-order bits.

2. The REG cannot be ai, bi, or p.

15 8 7 5 4 0

Register 00001101 xxx REG

15 8 7 0

Short immediate 00001100 short immediate
Instruction Set List 7-145

REP
REP Repeat Next Instruction

Flags affected This instruction does not affect the flags.

Cycles

Example rep #tap-1
mac (r4)+, (r1)-, a0

mac is executed #tap times.

Cycles Words

Register 1 1

Short immediate 1 1
7-146 Instruction Set

RET
RET Return Conditionally

Opcode

Syntax ret [cond]

Description This instruction is used to return from subroutines or interrupts. If the
condition is met, the program counter (pc) is pulled from the software
stack, while the previous program counter is lost, and the stack pointer
(sp) is postincremented.

This instruction can also be used as return from the maskable interrupt
service routines (INT0, INT1, or INT2). The IE bit in ST0 must be set to
one in order to re-enable interrupts if this is done. The TRAP/BI and NMI
interrupt service routines must end with either a reti or a retid
instruction.

Operation If condition then
(sp) → pc
sp + 1 → sp

Flags affected This instruction does not affect the flags (or IE bit).

Cycles

15 6 5 4 3 0

ret 0100010110 xx cond

Cycles Words

ret 2 (return not performed)
3 (return performed)

1

Instruction Set List 7-147

RET
RET Return Conditionally

Example The main program calls the init section of the subroutine sub. After
execution of ret , the program returns to the main routine and executes
the next instruction (mov a0h, @var).

Main Program: Subroutine “sub”:

Main: .CODE sub
mov @var, a0 init:
. .
. .
call sub.init ret
mov a0h, @var.
.

7-148 Instruction Set

RETD
RETD Delayed Return

Opcode

Syntax retd

Description This instruction is used for a delayed return from subroutines or
interrupts. Two one-cycle instructions or one two-cycle instruction are/is
fetched and executed, before executing the return. (The one-cycle
instruction and the two-cycle instruction cannot be instructions that break
the pipeline: brr; callr ; rep; trap; retd; retid; mov operand, pc;
movp (ai), pc; pop pc .) When the return occurs, the program counter
(pc) is popped from the software stack (the previous program counter is
lost) and the stack pointer (sp) is post-incremented.

The retd instruction and the instruction(s) following the retd (two one-
cycle instructions or one two-cycle instruction) are uninterruptible.

This instruction can also be used as a return from the maskable interrupt
service routines (INT0, INT1, or INT2). To re-enable interrupts, the IE bit
in ST0 must be set. The TRAP/BI and NMI interrupt service routines
must end with either a reti or a retid instruction.

Operation (sp) → temporary storage
sp + 1 → sp
Two one-cycle instructions or one two-cycle instruction
are/is executed
temporary storage → pc

Flags affected This instruction does not affect the flags.

15 6 5 0

retd 1101011110 xxxxxx
Instruction Set List 7-149

RETD
RETD Delayed Return

Cycles

Example The main program calls the init section of the subroutine sub. After
executing add p, a1 , the program returns to the main routine and
executes the next instruction (mov a1h, @var) after add p, a1 is
executed.

Main Program: Subroutine “sub”:

Main: .CODE sub
mov @var, a0 init:
. .
. retd
call sub.init mac (r4)+, (r0)-, a1
mov a1h, @var add p, a1

Cycles Words

retd 1 1
7-150 Instruction Set

RETI
RETI Return from Interrupt Conditionally

Opcode

Syntax reti [cond [,context]]

Description This instruction is used to return from interrupt with or without interrupt
context switching. If the condition is met, the program counter (pc) is
pulled from the software stack, while the previous program counter is
lost. The stack pointer (sp) is postincremented, and the IE bit in the ST0
register is set to enable interrupts. IE is set only when returning from the
INT0, INT1, or INT2 service routine.

The TRAP/BI and NMI interrupt service routines must end with either a
reti or a retid instruction.

Operation If condition then
(sp) → pc
sp + 1 → sp
1 → IE ;IE is set only when returning from INTO,

;INT1, or INT2 service routine.

If context selected then same context restore operation is
performed as for a cntx r instruction (see page 7-55 .)

Some assembler syntax examples are:

reti
reti ge
reti true, context
reti ge, context

Flags affected This instruction does not affect the flags.

15 6 5 4 3 0

reti (context
switching disabled) 0100010111 x 0 cond

15 6 5 4 3 0

reti (context
switching enabled) 0100010111 x 1 cond
Instruction Set List 7-151

RETI
RETI Return from Interrupt Conditionally

Cycles

Example After the execution of reti , context is restored from the shadow
registers, and the IE bit in the ST0 Status Register is set. The context
switching assumes that the IC0 bit in ICR is set.

Int0:
.
.
reti true, context

Cycles Words

reti 2 (return not performed)
3 (return performed)

1

7-152 Instruction Set

RETID
RETID Delayed Return from Interrupt

Opcode

Syntax retid

Description Delayed return from interrupt. The IE bit is set to enable interrupts, and
the stack pointer (sp) is postincremented. IE is set only when returning
from INT0, INT1, or INT2 service routine. The two one-cycle instructions
or one two-cycle instruction are/is fetched and executed before executing
the return. The one-cycle instruction and the two-cycle instruction cannot
be instructions that break the pipeline: brr; callr; rep; trap; retd;
retid; move operand, pc; pop pc . When the return occurs, the
program counter (pc) is popped from the software stack, and the
previous program counter is lost.

The retid instruction and the instruction(s) following the retid (two one-
cycle instructions or one two-cycle instruction) are uninterruptible.

Operation (sp) → temporary storage
sp + 1 → sp
1 → IE ;IE is set only when returning from INTO,

;INT1, or INT2 service routine.
Two one-cycle instructions or one two-cycle
instruction following retid instruction are/is
executed

temporary storage → pc

15 6 5 4 3 0

retid 1101011111 x 0 xxxx
Instruction Set List 7-153

RETID
RETID Delayed Return from Interrupt

Flags

This instruction does not affect the flags.

Cycles

Example Interrupted instruction is resumed after the execution of pop r2 .

Int0:
.
.
retid
pop r3
pop r2

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

retid 1 1
7-154 Instruction Set

RETS
RETS Return and Adjust Stack Pointer with a Short Immediate Offset

Opcode

Syntax rets #unsigned short immediate

Description This instruction is used to return from subroutines or interrupt service
routines (for INT0, INT1, or INT2) and to delete unnecessary parameters
from the stack. The program counter (pc) is pulled from the software
stack, while the previous program counter is lost. The stack pointer (sp)
is post-incremented by one plus an eight-bit unsigned short immediate
value.

To enable more interrupts, you must set to one the IE bit in ST0.

Operation (sp) → pc
sp + 1 + #immediate → sp

Flags affected This instruction does not affect the flags.

Cycles

15 8 7 0

rets 00001001 short immediate

Cycles Words

rets 3 1
Instruction Set List 7-155

RETS
RETS Return and Adjust Stack Pointer with a Short Immediate Offset

Example rets ##0x004F

Before Execution:

After Execution:

sp: 0x0020 0x0020: 0x0001

sp: 0x0070 pc: 0x0001
7-156 Instruction Set

RND
RND Round Upper 20 bits of A Accumulator

Opcode

Syntax rnd ai [, cond]

Description Round upper 20 bits of A accumulator if condition is met. Also see moda
instruction on page 7-92.

Operation Round upper 20 bits of ai
ai = ai+0x8000

Flags affected

Example rnd a1

Before Execution:

After Execution:

15 13 12 11 8 7 4 3 0

rnd 011 i 0111 1010 cond

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

a1: 0 0013 3A05

a1: 0 0013 BA05
Instruction Set List 7-157

ROL
ROL Rotate Accumulator Left through Carry

Opcode

Syntax rol ai [, cond] or
rol bi [, cond]

Description Rotate specified accumulator left if condition is met. The C flag bit is
shifted into the LSB of the accumulator and then overwritten with bit 35
of that accumulator. Also see moda instruction on page 7-92 and modb
instruction on page 7-96.

Operation if condition is true then
ai/bi[35] = temporary storage
ai/bi = (ai/bi << 1) + C
C = temporary storage

Flags affected

Example rol a1

Before Execution: (assuming C flag cleared)

After Execution:

C flag = 0

15 13 12 11 8 7 4 3 0

rol ai 011 i 0111 0101 cond

15 13 12 11 8 7 6 4 3 0

rol bi 011 i 0111 x 101 cond

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

a1: 0 1234 5678

a1: 0 2468 ACF0
7-158 Instruction Set

ROR
ROR Rotate Accumulator Right through Carry

Opcode

Syntax ror ai [, cond] or
ror bi [, cond]

Description Rotate specified accumulator right if condition is met. The C flag bit is
shifted into the MSB of the accumulator and then overwritten with bit 0
of that accumulator. Also see moda instruction on page 7-92 and modb
instruction on page 7-96.

Operation if condition is true then
ai/bi[0] = temporary storage
ai/bi = (ai/bi >> 1) + C * 2 35

C = temporary storage

Flags affected

Example ror a1

Before Execution: (assuming C flag cleared)

After Execution:

C flag = 0

15 13 12 11 8 7 4 3 0

ror ai 011 i 0111 0100 cond

15 13 12 11 8 7 6 4 3 0

ror bi 011 i 0111 x 100 cond

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

a1: 0 1234 5678

a1: 0 091a 2b3c
Instruction Set List 7-159

RST
RST Reset Bit Field

Opcode

Syntax rst ##long immediate, operand

Description Reset bit-fields specified in a 16-bit operand according to a long
immediate value. The long immediate value contains ones in the bit-field
locations to be reset.

If the operand is not part of an accumulator (ail , aih , aie , bil , or bih)
then the accumulators are unaffected. If the operand is part of an
accumulator, only the addressed part is affected.

The operand and the long immediate values are sign-extension
suppressed.

Operation operand AND ##long immediate → operand

operand = REG 1

(rN)
direct address

1. The REG cannot be ai, bi, p, or pc.

15 12 11 9 8 7 0

Short Direct 1110 001 1 direct

15 12 11 9 8 5 4 3 2 0

Indirect 1000 001 0111 mod rN

15 12 11 9 8 5 4 0

Register 1000 001 1111 REG
7-160 Instruction Set

RST
RST Reset Bit Field

Flags When the operand is not st0:

When the operand is st0:

The specified bits are reset according to the bit-field in the long
immediate value, whether or not the A0E bits have changed.

When resetting the A0E bits (rst ##long immediate, st0) the flags are
reset according to the long immediate value. When setting the A1E bits
(rst ##long immediate, st1), the flags are reset according to the ALU
output.

Cycles

Example rst ##0x004F, b0l

Before Execution:

After Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Direct 2 2

Indirect 2 2

Register 2 2

b0: 0 0013 3A05

b0: 0 0013 3A00
Instruction Set List 7-161

SET
SET Set Bit Field

Opcode

Syntax set ##long immediate, operand

Description Set specific bit-fields in a 16-bit operand according to a long immediate
value, the long immediate value containing ones in the bit-field locations
to be set.

If the operand is not part of an accumulator (ail , aih , bil , or bih) then
the accumulators are unaffected. If the operand is part of an
accumulator, only the addressed part is affected.

The operand and the long immediate values are sign-extension
suppressed.

Operation ##long immediate OR operand → operand

operand = REG 1

(rN)
direct address

1. The REG cannot be ai, bi, p, or pc.

15 12 11 9 8 7 0

Short Direct 1110 000 1 direct

15 12 11 9 8 5 4 3 2 0

Indirect 1000 000 0111 mod rN

15 12 11 9 8 5 4 0

Register 1000 000 1111 REG
7-162 Instruction Set

SET
SET Set Bit Field

Flags When the operand is not st0:

When the operand is st0:

The specified bits are set according to the bit-field in the long immediate
value, regardless of whether or not the A0E bits have changed.

When setting the A0E bits (set ##long immediate, st0) flags are set
according to the long immediate value. When setting the A1E bits (set
##long immediate , st1), the flags are set according to the ALU output.

Cycles

Example set ##7FFF, a0l

Before Execution:

After Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Direct 2 2

Indirect 2 2

Register 2 2

a0: 0 0013 3A05

a0: 0 0013 7FFF
Instruction Set List 7-163

SHFC
SHFC Shift Accumulators According to Shift Value Register Conditionally

Opcode

Syntax shfc soperand, doperand [, cond]

Description The contents of soperand are shifted according to the value in the sv
register, and the result is stored into doperand if the condition is met. If
a condition is not specified, the operation is always executed.

If the value in the sv register is positive, a left shift is executed. If the
value in the sv register is negative, a right shift is executed.

If the S flag in the ST2 Status register is set, a logical shift is executed.
If S is zero, an arithmetic shift is executed.

Operation If condition is true then

If 0 < sv ≤ 36 then
soperand << sv → doperand

If -36 ≤ sv < 0 then
soperand >> |sv| → doperand

If sv = 0 then
soperand → doperand 1

If soperand ≠ doperand then
soperand is unaffected

soperand, doperand: ab, ab

1. In case the sv content is zero, this instruction is a conditional move between
accumulators.

15 12 11 10 9 7 6 5 4 3 0

shfc 1101 ab 101 AB 0 cond
7-164 Instruction Set

SHFC
SHFC Shift Accumulators According to Shift Value Register Conditionally

Flags Arithmetic Shift:

If -36 ≤ sv ≤ 0 (shift right), then V is cleared. If 0 < sv < 36 (shift left) and
the operand before being shifted can be represented in (36 = sv) bits,
then V is cleared; V is set otherwise. If sv = 36 (shift left) and the
operand ≠ 0, then V is set; V is cleared otherwise.

Logical Shift:

Note: If sv = 0, the C flag is cleared.

Cycles

Example shfc a0, a0
(sv = 8)

Before Execution:

After Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Shfc 1 1

a0: 0 0001 0000

a0: 0 0100 0000
Instruction Set List 7-165

SHFI
SHFI Shift Accumulators by an Immediate Shift Value

Opcode

Syntax shfi soperand, doperand, #signed 6-bit immediate

Description The contents of soperand are shifted according to the immediate value,
and the result is stored in doperand .

If the immediate value is positive, a left shift is executed; if negative, a
right shift is executed.

If the S flag in the ST2 status register is set, a logical shift is executed.
If zero, arithmetic shift is executed.

Operation If 0 < #immediate ≤ 31 then
soperand << #immediate → doperand

If -32 ≤ #immediate < 0 then
soperand >> #|immediate| → doperand

If #immediate = 0 then
soperand → doperand 1

If soperand ≠ doperand then
soperand is unaffected

soperand, doperand: ab, ab

1. In case the immediate shift value is zero, this instruction can be used as a
move instruction between the 36-bit accumulators.

15 12 11 10 9 8 7 6 5 0

shfi 1001 ab 1 AB 1 immediate
7-166 Instruction Set

SHFI
SHFI Shift Accumulators by an Immediate Shift Value

Flags Arithmetic Shift:

If -32 ≤ #immediate ≤ 0 (shift right), then V is cleared. If 0 < #immediate
≤ 31 (shift left) and the operand before being shifted can be represented
in 36 - immediate bits, then V is cleared.

Logical Shift:

Note: If #immediate = 0, the C flag is cleared.

Cycles

Example shfi a0, a0, #-16

Before Execution:

After Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

shfi 1 1

a0: 0 8000 0000

a0: 0 0000 8000
Instruction Set List 7-167

SHL
SHL Shift Left

Opcode

Syntax shl ai [, cond] or
shl bi [, cond]

Description Shift specified accumulator left if condition is met. Also see moda
instruction on page 7-92 and modb instruction on page 7-96.

If the S flag in the ST2 status register is set, a logical shift is executed.
If zero, arithmetic shift is executed.

Operation if condition is true then
c = ai/bi[35]
ai/bi = ai/bi <<1

Flags affected Arithmetic Shift:

The C flag is set according to bit 35.

The V flag is cleared if the operand being shifted could be represented
in 35 bits.

Logical Shift:

A logical shift is performed when the S status bit in status register ST2
is set.

The C flag is set according to bit 35 shifted out of the operand.

15 13 12 11 8 7 4 3 0

shl ai 011 i 0111 0010 cond

15 13 12 11 8 7 6 4 3 0

shl bi 011 i 0111 x 010 cond

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
7-168 Instruction Set

SHL
SHL Shift Left

Example shl a1

Before Execution:

After Execution:

a1: 0 1987 6543

a1: 0 330e CA86
Instruction Set List 7-169

SHL4
SHL4 Shift Left by Four

Opcode

Syntax shl4 ai [, cond] or
shl4 bi [, cond]

Description Shift specified accumulator left by 4 if condition is met. Also see moda
instruction on page 7-92 and modb instruction on page 7-96.

If the S flag in the ST2 status register is set, a logical shift is executed.
If zero, arithmetic shift is executed.

Operation if condition is true then
c = ai/bi[32]
ai/bi = ai/bi << 4

Flags affected Arithmetic Shift:

The C flag is set according to bit 35.

The V flag is cleared if the operand being shifted could be represented
in 31 bits.

Logical Shift:

A logical shift is performed when the S status bit in status register ST2
is set.

The C flag is set according to bit 32 shifted out of the operand.

15 13 12 11 8 7 4 3 0

shl4 ai 011 i 0111 0011 cond

15 13 12 11 8 7 6 4 3 0

shl4 bi 011 i 0111 x 011 cond

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
7-170 Instruction Set

SHL4
SHL4 Shift Left by Four

Example shl4 a1

Before Execution:

After Execution:

a1: 0 1987 6543

a1: 1 9876 5430
Instruction Set List 7-171

SHR
SHR Shift Right

Opcode

Syntax shr ai [, cond] or
shr bi [, cond]

Description Shift specified accumulator right if condition is met. Also see moda
instruction on page 7-92 and modb instruction on page 7-96.

If the S flag in the ST2 status register is set, a logical shift is executed.
If zero, arithmetic shift is executed.

Operation if condition is true then
c = ai/bi[0]
ai/bi = ai/bi >> 1

Flags affected Arithmetic Shift:

The C flag is set according to bit 0.

Logical Shift:

A logical shift is performed when the S status bit in status register ST2
is set.

The C flag is set according to bit 0 shifted out of the operand.

15 13 12 11 8 7 4 3 0

shr ai 011 i 0111 0000 cond

15 13 12 11 8 7 6 4 3 0

shr bi 011 i 0111 x 000 cond

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
7-172 Instruction Set

SHR
SHR Shift Right

Example shr a1

Before Execution:

After Execution:

a1: 0 1987 6543

a1: 0 0CC3 B2A1
Instruction Set List 7-173

SHR4
SHR4 Shift Right by Four

Opcode

Syntax shr4 ai [, cond] or
shr4 bi [, cond]

Description Shift specified accumulator right by 4 if condition is met. Also see moda
instruction on page 7-92 and modb instruction on page 7-96.

If the S flag in the ST2 status register is set, a logical shift is executed.
If zero, arithmetic shift is executed.

Operation if condition is true then
c = ai/bi[3]
ai/bi = ai/bi >> 4

Flags affected Arithmetic Shift:

The C flag is set according to bit 3.

Logical Shift:

A logical shift is performed when the S status bit in status register ST2
is set.

The C flag is set according to bit 3 shifted out of the operand.

15 13 12 11 8 7 4 3 0

shr4 ai 011 i 0111 0001 cond

15 13 12 11 8 7 6 4 3 0

shr4 bi 011 i 0111 x 001 cond

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
7-174 Instruction Set

SHR4
SHR4 Shift Right by Four

Example shr4 a1

Before Execution:

After Execution:

a1: 0 1987 6543

a1: 0 0198 7654
Instruction Set List 7-175

SQR
SQR Square

Opcode

Syntax sqr operand

Description The operand is loaded into both the y input and x registers. Both values
are sign extended. The contents of the registers are multiplied together
and stored in p.

Operation operand → y
operand → x
signed y * signed x → p

operand: (rN)
REG1

direct address

1. The REG cannot be ai, bi, or p.

Flags affected This instruction does not affect the flags.

15 13 12 9 8 7 0

Short Direct 101 1101 i direct

15 13 12 9 8 7 5 4 3 2 0

Indirect 100 1101 i 100 mod rN

15 13 12 9 8 7 5 4 0

Register 100 1101 i 101 REG
7-176 Instruction Set

SQR
SQR Square

Cycles

Example sqr r1

Before Execution:

After Execution:

Cycles Words

Short Direct 1 1

Indirect 1 1

Register 1 1

r1: 1001

p: 0100 2001
Instruction Set List 7-177

SQRA
SQRA Square and Accumulate Previous Product

Opcode

Syntax sqra operand, ai

Description The previous product (p) is sign-extended to 36 bits and shifted as
defined in the PS field in ST1. The shifted value is added to ai and the
result is stored in ai. The operand is loaded into both the y and x inputs.
Both x and y are sign extended and are then multiplied together, the
product is stored in the p register.

Operation ai + shifted p → ai
operand → y
operand → x
signed y * signed x → p

operand: (rN)
REG1

direct address

1. The REG cannot be ai, bi, or p.

Flags affected

15 13 12 9 8 7 0

Short Direct 101 1110 i direct

15 13 12 9 8 7 5 4 3 2 0

Indirect 100 1110 i 100 mod rN

15 13 12 9 8 7 5 4 0

Register 100 1110 i 101 REG

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
7-178 Instruction Set

SQRA
SQRA Square and Accumulate Previous Product

Cycles

Example sqra (r1)+, a0

Before Execution:

After Execution: (assume PS bits in ST1 are cleared)

Cycles Words

Short Direct 1 1

Indirect 1 1

Register 1 1

a0: 0 0000 007F (r1): 4000

p: 0000 1000

a0: 0 0000 107F

p: 1000 0000
Instruction Set List 7-179

SUB
SUB Subtract

Opcode
15 13 12 9 8 7 0

Short Direct 101 0111 i direct

15 13 12 9 8 7 5 4 3 2 0

Indirect 100 0111 i 100 mod rN

15 13 12 9 8 7 5 4 0

Register 100 0111 i 101 REG

15 12 11 9 8 7 0

Short Immediate 1100 111 i short immediate

15 12 11 9 8 7 5 4 0

Long Immediate
(MSW) 1000 111 i 110 xxxxx

15 0

Long Immediate
(LSW) long immediate

15 12 11 9 8 7 6 0

Short Index 0100 111 i 0 Offset

15 12 11 9 8 7 3 2 0

Long Index
(MSW) 1101 010 i 11011 111

15 0

Long Index
(LSW) long index

15 12 11 9 8 7 3 2 0

Long Direct
(MSW) 1101 010 i 11111 111

15 0

Long Direct
(LSW) long direct
7-180 Instruction Set

SUB
SUB Subtract

Syntax sub operand, ai

Description The contents of operand are subtracted from that of ai. The result is
stored in ai[35:0]. If an operand other than p or aj register is selected,
the contents of operand are subtracted from ai[15:0] to form a 16-bit
subtraction. If the p or aj register is selected for the operand, aj/p[31:0]
is subtracted from ai[31:0]. In both cases, the sign is extended through
ai[35:32].

Operation ai - operand → ai

operand = REG 1

(rN)
direct address
[##direct address]
#unsigned short immediate
##long immediate
(rb+offset7)
(rb+##offset)

1. The REG cannot be bi.

Flags
15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
Instruction Set List 7-181

SUB
SUB Subtract

Cycles

Example sub (r4), a0

Before Execution:

After Execution:

Cycles Words

Short Direct 1 1

Long Direct 2 2

Indirect 1 1

Register 1 1

Short Immediate 1 1

Long Immediate 2 2

Index 1 1

Long Index 2 2

a0: 0 0820 1000 (r4): 0020

a0: 0 0820 0FE0
7-182 Instruction Set

SUBH
SUBH Subtract from High Accumulator

Opcode

Syntax subh operand, ai

Description The contents of operand are subtracted from ai[31:16] to form 16-bit
result. ai[15:0] is unaffected after the operation.

Operation ai - operand * 2 16 → ai

operand = REG 1

(rN)
direct address

1. The REG cannot be bi, ai, or p.

Flags affected

Cycles

15 13 12 9 8 7 0

Short Direct 101 1011 i direct

15 13 12 9 8 7 5 4 3 2 0

Indirect 100 1011 i 100 mod rN

15 13 12 9 8 7 5 4 0

Register 100 1011 i 101 REG

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Direct 1 1

Indirect 1 1

Register 1 1
Instruction Set List 7-183

SUBH
SUBH Subtract from High Accumulator

Example subh rb, a0

Before Execution:

After Execution:

a0: 0 2045 4000 rb: 3450

a0: F EBF5 4000 rb: 3450
7-184 Instruction Set

SUBL
SUBL Subtract from Low Accumulator

Opcode

Syntax subl operand, ai

Description The contents of operand are subtracted from ai[15:0] to form 16-bit
result. Sign-extension of operand is suppressed for this operation.

Operation ai - operand → ai
The operand is sign-extension suppressed.

operand = REG 1

(rN)
direct address

1. The REG cannot be bi, ai, or p.

Flags

Cycles

15 13 12 9 8 7 0

Short Direct 101 1100 i direct

15 13 12 9 8 7 5 4 3 2 0

Indirect 100 1100 i 100 mod rN

15 13 12 9 8 7 5 4 0

Register 100 1100 i 101 REG

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Direct 1 1

Indirect 1 1

Register 1 1
Instruction Set List 7-185

SUBL
SUBL Subtract from Low Accumulator

Example subl r1, a0

Before Execution:

After Execution:

a0: 0 2020 0000 r1: FF00

a0: 0 201F 0100 r1: FF00
7-186 Instruction Set

SUBV
SUBV Subtract Long Immediate Value from a Register or a Data Memory
Location

Opcode

Syntax subv ##long immediate, operand

Description The contents of long immediate value are subtracted from operand to
form a 16-bit result. The result of the operation is stored in operand. The
operand and long immediate values are sign-extended. If the operand is
not part of an accumulator (ail , aih , aie , bil , and bih) then the
accumulators are unaffected. If the operand is part of an accumulator,
only the addressed part is affected.

Operation operand - ##long immediate → operand

operand = REG 1

(rN)
direct address

1. The REG cannot be bi, ai, or p.

Note that ai can be used in sub ##long immediate, ai instructions.

15 12 11 9 8 7 0

Short Direct 1110 111 1 direct

15 12 11 9 8 5 4 3 2 0

Indirect 1000 111 0111 mod rN

15 12 11 9 8 5 4 0

Register 1000 111 1111 REG

15 0

Long Immediate
(LSW) long immediate
Instruction Set List 7-187

SUBV
SUBV Subtract Long Immediate Value from a Register or a Data Memory
Location

Flags

Z, M, and C are the results of the 16-bit operation. M is affected by bit 15.

When the operand is st0:

ST0 (including the flags) accepts the subtraction result, regardless of a0e
bits.

When the operand is not st0:

When subtracting a long immediate value from ST1, the ALU output
affects the flags.

When the operand is part of an accumulator, only the addressed part is
affected. For example, if the instruction subv ##long immediate, a0l
generates a borrow and the carry flag is set, but a0h is unchanged.
However, the instruction subl ##long immediate, a0l (with same a0
and immediate values) changes the a0h and affects the carry flag
according to the 36-bit ALU result.

Note: When using subv ##long immediate, st0 and cmpv ##long
immediate, st0 , the flags are set differently.

Cycles

15 12 11 10 9 8 7 6 5 4 3 2 1 0

A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Direct 2 2

Indirect 2 2

Register 2 2
7-188 Instruction Set

SUBV
SUBV Subtract Long Immediate Value from a Register or a Data Memory
Location

Example subv ##0x004F, b0h

Before Execution:

After Execution:

b0: 0 0013 3A05

b0: 0 FFC4 3A05
Instruction Set List 7-189

SWAP
SWAP Swap Accumulators

Opcode

swap = 0000 a0 ↔ b0
0001 a0 ↔ b1
0010 a1 ↔ b0
0011 a1 ↔ b1
0100 a0 ↔ b0 and a1 ↔ b1
0101 a0 ↔ b1 and a1 ↔ b0
0110 a0 → b0 → a1
0111 a0 → b1 → a1
1000 a1 → b0 → a0
1001 a1 → b1 → a0
1010 b0 → a0 → b1
1011 b0 → a1 → b1
1100 b1 → a0 → b0
1101 b1 → a1 → b0

Syntax Refer to the Operation section for the different swap mnemonics.

Description Contents of selected ai and bi accumulators are exchanged. When the
operation is x → y → z, then y → z and x → y.

Operation Assembler mnemonics Operation

swap (a0, b0), (a1, b1) a0 ↔ b0 and a1 ↔ b1
swap (a0, b1), (a1, b0) a0 ↔ b1 and a1 ↔ b0
swap (a0, b0) a0 ↔ b0
swap (a0, b1) a0 ↔b1
swap (a1, b0) a1 ↔ b0
swap (a1, b1) a1 ↔ b1
swap (a0, b0, a1) a0 → b0 → a1
swap (a0, b1, a1) a0 → b1 → a1
swap (a1, b0, a0) a1 → b0 → a0
swap (a1, b1, a0) a1 → b1 → a0
swap (b0, a0, b1) b0 → a0 → b1
swap (b0, a1, b1) b0 → a1 → b1
swap (b1, a0, b0 b1 → a0 → b0
swap (b1, a0, b0) b1 → a0 → b0
swap (b1, a1, b0) b1 → a1 → b0

15 6 5 4 0

swap 0100100110 xx swap
7-190 Instruction Set

SWAP
SWAP Swap Accumulators

Flags affected

In the case of: swap (a0, b0), (a1, b1)
swap (a0, b1), (a1, b0)

The flags represent the data transferred into a0.

In all other cases: the flags represent the data transferred into ai.

Cycles

Example swap (a0, b0), (a1, b1)

Before Execution:

After Execution:

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

swap 1 1

a0: 0 0000 1091 b0: 0 0346 5490

a1: 0 0000 8000 b1: 0 0FFF 2300

a0: 0 0346 5490 b0 0 0000 1091

a1: 0 0FFF 2300 b1: 0 0000 8000
Instruction Set List 7-191

TRAP
TRAP Software Interrupt

Opcode

Syntax trap

Description The stack pointer (sp) is predecremented. The program counter (pc),
which points to the next instruction, is pushed onto the stack and into the
DVM register. A branch to address location 0x0002 is executed. The
interrupts (INT0, INT1, INT2, NMI, or BI) are disabled regardless of the
interrupt mask bits: IE, IM0, IM1, and IM2 in ST0 and IM2 in ST2.

The trap instruction cannot be used in the TRAP/BI service routine. To
return from the TRAP/BI service routine, use either the reti or retid
instruction.

The software interrupt (TRAP) and the breakpoint interrupt (BI) shares
the same interrupt vector address. For more details on TRAP/BI, refer to
Section 6.3.3, “TRAP/BI Interrupts.”

Note that both CDI and ScanICE based debug methods use the TRAP/BI
interrupt. This precludes the use of the TRAP instruction when using the
CWDSP1650 debugger.

Operation sp – 1 → sp
pc → (sp)
pc → dvm
0x0002 → pc
Disable interrupts (INT0, INT1, INT2, NMI, BI)

Flags affected This instruction does not affect the flags.

Cycles

15 5 4 0

trap 00000000001 xxxxx

Cycles Words

Trap 2 1
7-192 Instruction Set

TST0
TST0 Test Bit Field for Zeros

Opcode

Syntax tst0 mask, operand

Description Test whether a specified bit-field of REG (one of the registers) or a data
space location (using a direct or indirect addressing mode) is all zeros.
The field to be tested is specified by a mask containing ones in the bit
field location. The mask is the content of an Ax Accumulator (ail) or a
long immediate operand. The test operation affects the zero flag—the
flag is set if the specified bit-field is all zeros, cleared otherwise.

Operation If (operand AND mask) = 0x0000 then Z = 1
else Z = 0

mask = ail
##long immediate

operand = REG 1

(rN)
direct address

1. The REG cannot be ai, bi, or p.

The instructions tst0 a0l, a0l ; tst0 a1l, a1l are illegal. The
operand and the mask are sign-extension suppressed.

15 13 12 9 8 7 0

Direct ai 101 0100 i direct

15 13 12 9 8 7 5 4 3 2 0

Indirect ai 100 0100 i 100 mod rN

15 13 12 9 8 7 5 4 0

Register ai 100 0100 i 101 REG

15 12 11 9 8 7 0

Direct mask 1110 100 1 direct
Instruction Set List 7-193

TST0
TST0 Test Bit Field for Zeros

Flags

Cycles

Example tst0 ##0x004F, r1

Before Execution:

After Execution:

Z is set in the ST0 Status Register.

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Direct 1 1

Indirect 1 1

Register 1 1

Long Immediate 2 2

r1: 0000

r1: 0000
7-194 Instruction Set

TST1
TST1 Test Bit Field for Ones

Opcode

Syntax tst1 mask, operand

Description Test whether all bits in the operand, specified by the bit-field in mask, are
set. The mask contains ones in the bit field locations to be tested. The
test operation affects the zero flag which is set if the specified bit-field is
all ones, cleared otherwise.

15 13 12 9 8 7 0

Direct ai 101 0101 i direct

15 13 12 9 8 7 5 4 3 2 0

Indirect ai 100 0101 i 100 mod rN

15 13 12 9 8 7 5 4 0

Register ai 100 0101 i 101 REG

15 12 11 9 8 7 0

Direct mask 1110 101 i direct

15 0

Long immediate
(LSW) long immediate
Instruction Set List 7-195

TST1
TST1 Test Bit Field for Ones

Operation If (operand AND mask) = 0x0000 then Z = 1
else Z = 0

mask = ail
##long immediate

operand = REG 1

(rN)
direct address

1. The REG cannot be ai, bi, or p.

The instructions tst1 a0l, a0l ; tstl a1l, a1l are illegal. The
operand and the mask are sign-extension suppressed.

Flags

Cycles

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT

Cycles Words

Short Direct 1 1

Indirect 1 1

Register 1 1

Long Immediate 2 2
7-196 Instruction Set

TST1
TST1 Test Bit Field for Ones

Example tst1 ##0x004F, r1

Before Execution:

After Execution:

Z is set in the ST0 Status Register.

r1: FFFF

r1: FFFF
Instruction Set List 7-197

TSTB
TSTB Test Specific Bit

Opcode

Syntax tstb operand, #bit number

Description Test whether a specified bit from operand is a one or a zero. The bit to
be tested is specified by the bit number (0-15). The test operation affects
the zero flag—the flag is set if the specified bit is a one, cleared
otherwise.

Operation If operand [bit number] = 1 then Z = 1

If operand [bit number] = 0 then Z = 0

operand = REG 1

(rN)
direct address

0 ≤ bit number ≤ 15

1. The REG cannot be ai, bi, or p.

Flags

The Z flag reflects the status of the tested bit.

15 12 11 8 7 0

Direct 1111 bbbb direct

15 12 11 8 7 5 4 3 2 0

Indirect 1001 bbbb 001 mod rN

15 12 11 8 7 5 4 0

Register 1001 bbbb 000 REG

15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
7-198 Instruction Set

TSTB
TSTB Test Specific Bit

Cycles

Example tstb a0l, #7

Before Execution:

After Execution:

Z is set in the ST0 Status Register.

Cycles Words

Short Direct 1 1

Indirect 1 1

Register 1 1

a0: 0 1010 008F

a0: 0 1010 008F
Instruction Set List 7-199

XOR
XOR Exclusive Or

Opcode
15 13 12 9 8 7 0

Short Direct 101 0010 i direct

15 13 12 9 8 7 5 4 3 2 0

Indirect 100 0010 i 100 mod rN

15 13 12 9 8 7 5 4 0

Register 100 0010 i 101 REG

15 12 11 9 8 7 0

Short Immediate 1100 010 i short immediate

15 12 11 9 8 7 5 4 0

Long Immediate
(MSW) 1000 010 i 110 xxxxx

15 0

Long Immediate
(LSW) long immediate

15 12 11 9 8 7 3 2 0

Long Direct
(MSW) 1101 010 i 11111 010

15 0

Long Direct
(LSW) long direct

15 12 11 9 8 7 6 0

Index 0100 010 i 0 Offset

15 12 11 9 8 7 3 2 0

Long Index
(MSW) 1101 010 i 11011 010

15 0

Long Index
(LSW) long index
7-200 Instruction Set

XOR
XOR Exclusive Or

Syntax xor operand, ai

Description The operand and ai are logically-XORed and the result stored in ai . If
p or ai is selected for operand, ai[35:0] is logically XORed with operand
and the result is stored in ai[35:0]. If the operand is a 16-bit register or
an immediate value, the operand is zero-extended to form a 36-bit
operand, then XORed with the accumulator. Therefore, this instruction
does not affect the upper bits of the accumulator.

Operation ai ← ai XOR operand

operand = REG 1

(rN)
direct address
long direct address
#unsigned short
##long immediate
(rb+offset7)
(rb+##offset)

1. REG cannot be bi.

Flags
15 12 11 10 9 8 7 6 5 4 3 2 1 0

st0: A0E Z M N V C E L R IM1 IM0 IE SAT
Instruction Set List 7-201

XOR
XOR Exclusive Or

Cycles

Example xor ##0xFFFF, a0

Before Execution:

After Execution:

Cycles Words

Short Direct 1 1

Long Direct 2 2

Indirect 1 1

Register 1 1

Short Immediate 1 1

Long Immediate 2 2

Index 1 1

Long Index 2 2

a0: 0 4320 E3DD

a0: 0 4320 1C22
7-202 Instruction Set

Chapter 7 Instruction Set
7.5 Instruction Opcode Bit Coding

This section lists the opcodes with their respective bit encodings in
tabular form. Table 7.8 through Table 7.24 list opcodes for the
instructions in Section 7.4, “Instruction Set List.”

Table 7.8 Opcode i

i (ai) Description

0 Accumulator a0

1 Accumulator a1

Table 7.9 Opcode i or j

i/j (bi) Description

0 Accumulator b0

1 Accumulator b1

Table 7.10 Opcode AB

AB/ab Description

00 b0

01 b1

10 a0

11 a1
Instruction Opcode Bit Coding 7-203

Table 7.11 Opcode ABL

ABL Description

00 b0l

01 b1l

10 a0l

11 a1l

Table 7.12 Opcode rn

rn (rN) Description

000 r0

001 r1

010 r2

011 r3

100 r4

101 r5

Table 7.13 Opcode rn*

rn* (rN*) Description

000 r0

001 r1

010 r2

011 r3

100 r4

101 r5

110 rb

111 y
7-204 Instruction Set

Table 7.14 Opcode mod

mod Description

00 No modification

01 +1

10 -1

11 +step

Table 7.15 Opcode w

w (rJ) Description

0 r4

1 r5

Table 7.16 Opcode REG/reg

REG Description REG Description

00000 r0 10000 b0h

00001 r1 10001 b1h

00010 r2 10010 b01

00011 r3 10011 b11

00100 r4 10100 ext0

00101 r5 10101 ext1

00110 rb 10110 ext2

00111 y 10111 ext3

01000 st0 11000 a0

01001 st1 11001 a1

(Sheet 1 of 2)
Instruction Opcode Bit Coding 7-205

01010 st2 11010 a01

01011 p / ph 11011 a11

01100 pc 11100 a0h

01101 sp 11101 a1h

01110 cfgi 11110 lc

01111 cfgj 11111 sv

Table 7.17 Opcode ii

ii Description

00 No modification

01 +1

10 -1

11 +step

Table 7.18 Opcode jj

jj Description

00 No modification

01 +1

10 -1

11 +step

Table 7.16 Opcode REG/reg (Cont.)

REG Description REG Description

(Sheet 2 of 2)
7-206 Instruction Set

Table 7.19 Opcode qq

qq (rI) Description

00 r0

01 r1

10 r2

11 r3

Table 7.20 Opcode cond

cond Description cond Description

0000 true 1000 c

0001 eq 1001 v

0010 neq 1010 e

0011 gt 1011 l

0100 ge 1100 nr

0101 lt 1101 niu0

0110 le 1110 iu0

0111 nn 1111 iu1

x Don’t Care

Table 7.21 Opcode x

x Description

x don’t care
Instruction Opcode Bit Coding 7-207

Table 7.22 Opcode bank in BANKE Instructions

bank Description

0001 cfgi

0010 r4

0100 r1

1000 r0

Table 7.23 Opcode ext

ext Description

010 ext0

011 ext1

110 ext2

111 ext3

Table 7.24 Opcode bbbb

bbbb Bit Number bbbb Bit Number

0000 0 1000 8

0001 1 1001 9

0010 2 1010 10

0011 3 1011 11

0100 4 1100 12

0101 5 1101 13

0110 6 1110 14

0111 7 1111 15
7-208 Instruction Set

Chapter 8
On-Chip Emulation
Module (OCEM)
This chapter describes the on-chip emulation module (OCEM), which is
an optional module for debug support with the CWDSP1650. This
chapter covers all aspects of the operation and interface of the OCEM.

This chapter contains the following sections:

♦ Section 8.1, “OCEM Overview”

♦ Section 8.2, “OCEM Programming Model”

♦ Section 8.3, “OCEM Signals”

♦ Section 8.4, “OCEM Breakpoints”

8.1 OCEM Overview

The OCEM is an optional module that can provide on-chip emulation for
a CWDSP1650-based chip. The OCEM uses the BI/TRAP breakpoint of
the CWDSP1650 core to implement all emulation functions. The OCEM
includes the following features:

♦ Breakpoint generation

♦ Program flow tracing

♦ ScanICE debug support

♦ Suspended mode operation

8.1.1 Breakpoint Generation

Predefined conditions programmed into the OCEM registers determine
the breakpoint generation conditions. Once a condition is met, the OCEM
activates the breakpoint mechanism (BI/TRAP), causing the core to
8-1

suspend any current action and jump to the BI/TRAP interrupt vector.
The OCEM provides multiple breakpoints:

♦ Program address breakpoints with separate counters

♦ Data address breakpoint

♦ Data value breakpoint

♦ Combined data address and data value breakpoints

♦ External registers breakpoint

♦ Abort breakpoint

♦ Branch instruction breakpoint

♦ Block repeat loop breakpoint

♦ Interrupt breakpoint

♦ Illegal access breakpoint

♦ Program flow trace buffer full breakpoint

♦ Single step breakpoint

See Section 8.4, “OCEM Breakpoints,” for more information about using
these OCEM breakpoints.

8.1.2 Program Flow Tracing

Program flow tracing produces a dynamic record of program addresses
that may be used for debugging a program. These addresses provide a
full program trace of instructions executed by the core. The OCEM
contains a 16-bit program flow trace register and a 17-bit FIFO program
flow trace buffer, both are described in more detail in Section 8.2.8,
“Program Flow Trace Register and Program Flow Trace Buffer.”

8.1.3 ScanICE Debug Support

To minimize chip pin count of a design, the OCEM is designed to support
the ScanICE serial testing and debugging interface. It also allows an
external scan controller to take control of a debugging session without
the need for the core to run a monitor program. See Chapter 9,
“ScanICE,” for more information.
8-2 On-Chip Emulation Module (OCEM)

8.1.4 Suspended Mode Operation

The OCEM supports a low power suspended mode. When in this mode,
the OCEM consumes negligible power and is effectively disabled. In the
suspended mode, nothing inside the OCEM is clocked. Therefore, the
OCEM can be incorporated into final designs with little penalty in terms
of silicon area and power consumption. This enables the designer to
debug a design in its final form without the need for a special debugging
prototype.

8.2 OCEM Programming Model

This section describes the OCEM programming model. All registers and
counters within the model are memory-mapped into the data memory
space of the CWDSP1650 core. Table 8.1 lists these components with
their address locations and page numbers.

Table 8.1 OCEM Programming Model

Register or Counter Physical Address Page

Status 0 Register 0xF7FF 8-4

Status 1 Register 0xF7FE 8-6

Mode Register 0xF7FD 8-7

Data Address Breakpoint 0xF7FB 8-9

Data Address Mask 0xF7FA 8-9

Program Address Breakpoint Counter 3 0xF7F9 8-10

Program Address Breakpoint Counter 2 0xF7F8 8-10

Program Address Breakpoint Counter 1 0xF7F7 8-10

Program Address Breakpoint 3 0xF7F3 8-10

Program Address Breakpoint 2 0xF7F2 8-10

Program Address Breakpoint 1 0xF7F1 8-10

Program Flow Trace Register 0xF7F0 8-10
OCEM Programming Model 8-3

The OCEM registers do not have to be memory mapped in systems
using the ScanICE debug as the mapping is implemented in off-core
logic. Apart from the two status registers, the content of all the OCEM
registers and counters after a reset depends on the DBG_PIN input. If
DBG_PIN is asserted HIGH on the falling edge of RST, their contents
before reset are preserved. Otherwise, they are all cleared to zero. The
same rule also applies to the program flow trace buffer. The two status
registers are always cleared to zero after reset. The rest of this section
describes the registers and counters from Table 8.1 in more detail.

8.2.1 Status 0 Register

The Status 0 Register contains status information for different
breakpoints. The OCEM updates this register automatically to reflect the
current breakpoint status when the core is not servicing a TRAP/BI
interrupt. While servicing a TRAP/BI interrupt, this register is modified
only when written to explicitly. The Status 0 Register is located at
address 0xF7FF. The value of this register after reset is zero. The core
can read and write all bits in the register unless otherwise stated.
Figure 8.1 shows the bit fields for the OCEM Status 0 Register.

Figure 8.1 Status 0 Register

SFT Software Trap 15, R
The OCEM sets this bit to one when it detects a software
trap. A software trap occurs when the core executes the
TRAP instruction.

ILL Illegal Breakpoint 14, R/W
The OCEM sets this bit to one when it detects an illegal
breakpoint. An illegal breakpoint occurs when the
program attempts an access to the mailbox space or
OCEM registers outside a breakpoint handler.

TBF Trace Buffer Full 13, R/W
The OCEM sets this bit to one when it detects a program
flow trace buffer full breakpoint.

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

SFT ILL TBF INT BR RES PA3 PA2 PA1 ABORT EREG CDVA DA DV
8-4 On-Chip Emulation Module (OCEM)

INT Interrupt Breakpoint 12, R/W
The OCEM sets this bit to one when it detects a
breakpoint due to the core servicing an interrupt.

BR Branch Breakpoint 11, R/W
The OCEM sets this bit to one when it detects a branch
or block repeat breakpoint.

RES Reserved [10:8]
These bits are reserved for LSI Logic. These bits always
read as zeroes. Writing to these bits has no effect.

PA3 Program Address 3 7, R/W
When the OCEM detects a program address breakpoint
initiated by Program Address Breakpoint Register 3, PA3
is set to one.

PA2 Program Address 2 6, R/W
When the OCEM detects a program address breakpoint
initiated by Program Address Breakpoint Register 2, PA2
is set to one.

PA1 Program Address 1 5, R/W
When the OCEM detects a program address breakpoint
initiated by Program Address Breakpoint Register 1, PA1
is set to one.

ABORT Abort 4, R/W
When the OCEM detects a breakpoint due to its EVENT
input signal, ABORT is set to one.

EREG External Register 3, R/W
The OCEM sets this bit to one when it detects a
breakpoint due to an user-defined register transaction
supported by the CWDSP1650 core.

CDVA Combined Data Value and Address
Breakpoint 2,R/W
When the OCEM detects a breakpoint due to both a data
value match and a data address match, CDVA is set to
one.

DA Data Address Breakpoint 1, R/W
The OCEM sets this bit to one when it detects a
breakpoint due to a data address match.
OCEM Programming Model 8-5

DV Data Value Breakpoint 0, R/W
When the OCEM detects a breakpoint due to a data
value match, it sets DV to one.

8.2.2 Status 1 Register

The Status 1 Register contains miscellaneous status information. The
OCEM updates this register automatically to reflect the current status.
Unless otherwise stated, the core can read and write all bits in the
register. The Status 1 Register is located at address 0xF7FE. Value held
at each bit after reset is described below. Figure 8.2 shows the bit fields
for OCEM Status 1 Register.

Figure 8.2 Status 1 Register

DBG Debug 15, R/W
A one on this bit indicates debug mode. The OCEM sets
DBG to one when the DBG_PIN input is asserted on the
falling edge of RST.

BOOT Boot 14, R/W
A one on this bit indicates boot mode. The OCEM sets
BOOT to one when the BOOT_PIN input is asserted on
the falling edge of RST.

ERR Error 13, R/W
The OCEM sets this bit to one when a reset occurs
during a breakpoint service routine. In this case, the
emulation session might continue improperly after the
reset.

For example, if reset occurs through a hardware signal
and not through the CWDSP1650 debugger, the core to
debugger communication might be suspended
indefinitely, so a new emulation session must be initiated.

MVD MOVD 12, R/W
When the OCEM detects the core executing a MOVD
instruction, it sets this bit to one.

15 14 13 12 11 1 0

DBG BOOT ERR MVD RES TREI
8-6 On-Chip Emulation Module (OCEM)

RES Reserved [11:1]
These bits are reserved for LSI Logic. These bits always
read as zeroes. Writing to these bits has no effect.

TREI Trace Entry Indication 0, R
TREI acts as a tag bit for the current program flow trace
buffer entry. Refer to Section 8.2.8, “Program Flow Trace
Register and Program Flow Trace Buffer,” for details of
the program flow trace buffer.

8.2.3 Mode Register

The Mode Register contains bits that enable various OCEM functions,
such as breakpoints and single stepping. The core can read and write
all Mode Register bits. The Mode Register is located at address 0xF7FD.
The content of this register after reset depends on the input signal
DBG_PIN. If DBG_PIN is asserted high on the falling edge of RST, the
register content before reset is preserved. Otherwise, all bits are cleared
to zero. Note that the OCEM is prevented from raising any breakpoint
while the core is servicing a TRAP/BI interrupt, regardless of the content
of the Mode Register. Figure 8.3 shows the bit-fields for the OCEM Mode
Register.

Figure 8.3 Mode Register

SSE Single Step Enable 15, R/W
Setting this bit to one enables single-step operation.

ILLE Illegal Enable 14, R/W
Setting this bit to one enables a breakpoint on an illegal
condition (for example, trying to access an OCEM
register not through the Trap Handler).

BKRE Block Repeat Enable 13, R/W
Setting this bit to one enables a breakpoint when
returning to the beginning of a block repeat loop.
Executing a REP loop will not raise this breakpoint.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SSE ILLE BKRE TBFE INTE BRE P3E P2E P1E EXTRE EXTWE CDVAE DARE DAWE DVRE DVWE
OCEM Programming Model 8-7

TBFE Trace Buffer Full Enable 12, R/W
Setting this bit to one enables a breakpoint when the
program flow trace buffer is full.

INTE Interrupt Enable 11, R/W
Setting this bit to one enables a breakpoint upon
detection of the servicing of an interrupt.

BRE BR Enable 10, R/W
Setting this bit to one enables a breakpoint when the core
executes a branch-type instruction. A branch-type
instruction could be one of the following: BR, BRR, CALL
CALLR, CALLA, RET, RETD, RETS, RETI, RETID, or any
instruction that has the program counter register (PC) in
the core as a destination.

P3E P3 Enable 9, R/W
Setting this bit to one enables Program Address
Breakpoint 3. A breakpoint occurs when the core fetches
an instruction from a program address specified at
Program Address Breakpoint Register 3 (address
0xF7F3).

P2E P2 Enable 8, R/W
Setting this bit to one enables Program Address
Breakpoint 2. A breakpoint occurs when the core fetches
an instruction from a program address specified at
Program Address Breakpoint Register 2 (address
0xF7F2).

P1E P1 Enable 7, R/W
Setting this bit to one enables Program Address
Breakpoint 1. A breakpoint occurs when the core fetches
an instruction from a program address specified at
Program Address Breakpoint Register 1 (address
0xF7F1).

EXTRE External Register Read Enable 6, R/W
Setting this bit to one enables a breakpoint as a result of
a user-defined register read transaction.

EXTWE External Register Write Enable 5, R/W
Setting this bit to one enables a breakpoint as a result of
a user-defined register write transaction.
8-8 On-Chip Emulation Module (OCEM)

CDVAE Combined Data Value and Address Enable 4, R/W
Setting this bit to one enables a breakpoint as a result of
a simultaneous data address and data value match.

DARE Data Address Read Enable 3, R/W
Setting this bit to one enables data address breakpoints
for data read transactions. A break occurs when the core
reads from a data address location that matches the
address in the Data Address Breakpoint Register.

DAWE Data Address Write Enable 2, R/W
Setting this bit to one enables data address breakpoints
for data write transactions. A break occurs when the core
writes to a data address location that matches the
address in the Data Address Breakpoint Register.

DVRE Data Value Read Enable 1, R/W
Setting this bit to one enables a data value breakpoint on
a data read transaction when the value read matches the
Data Value Breakpoint Register (DVM) within the core.

DVWE Data Value Write Enable 0, R/W
Setting this bit to one enables a data value breakpoint on
a data write transaction when the value written matches
the Data Value Breakpoint Register (DVM) within the
core.

8.2.4 Data Address Breakpoint Register

The Data Address Breakpoint register is a 16-bit register containing the
data address location that triggers a data address breakpoint. This
register is located at address 0xF7FB. The core can read and write this
register. The content of this register after reset depends on the input
signal DBG_PIN. If DBG_PIN is asserted HIGH on the falling edge of
RST, the register content before reset is preserved. Otherwise, all bits
are cleared to zero.

8.2.5 Data Address Mask Register

The Data Address Mask register is a 16-bit register containing the data
address mask. This register is located at address 0xF7FA. The core can
read and write this register. A one on any bit in this register masks out
the corresponding bit when matching the Data Address Breakpoint
Register with the current data address on the XAB and the YAB. The
OCEM Programming Model 8-9

content of this register after reset depends on the input signal DBG_PIN.
If DBG_PIN is asserted HIGH on the falling edge of RST, the register
content before reset is preserved. Otherwise, all bits are cleared to zero.

8.2.6 Program Address Breakpoint Counters

The OCEM has three 16-bit read/write program address breakpoint
counters. Each counter has a corresponding Program Address
Breakpoint Register (see Section 8.2.7, “Program Address Breakpoint
Registers.”) When a program address breakpoint is enabled, the OCEM
decrements a counter by one every time there is a valid program fetch
address on the instruction address bus (IAB) that matches the address
in the corresponding Program Address Breakpoint Register. The counter
stops decrementing when it reaches zero. The contents of these
counters after reset depends upon the input signal DBG_PIN. If
DBG_PIN is asserted HIGH on the falling edge of RST, the content of
the counters before reset are preserved. Otherwise, the counters are
cleared to zero.

8.2.7 Program Address Breakpoint Registers

The OCEM has three 16-bit read/write program address breakpoint
registers containing the address locations that triggers program address
breakpoints. When enabled, the OCEM raises a program address
breakpoint if a valid instruction fetch address on the IAB matches the
content of any one of these registers and the current value held in the
corresponding Program Address Breakpoint Counter is either zero or
one. The contents of these registers after reset depend on the input
signal DBG_PIN. If DBG_PIN is asserted HIGH on the falling edge of
RST, the contents of the registers before reset are preserved. Otherwise,
the registers are cleared to zero.

8.2.8 Program Flow Trace Register and Program Flow Trace Buffer

The OCEM has a 16-bit Program Flow Trace Register and a 16-stage,
17-bit wide FIFO Program Flow Trace Buffer. The buffer dynamically
holds the most recent nonlinear program addresses, which are locations
of instructions that cause discontinuity in the sequential program flow.
Examples of these instructions include branches and interrupts. The
nonlinear addressees are stored in the program flow trace buffer in the
order of their occurrence. Each 17-bit entry in the trace buffer consists
8-10 On-Chip Emulation Module (OCEM)

of a 16-bit nonsequential address and a tag bit. When set to zero, this
tag bit identifies entries that need to be decoded with adjacent entries.
The entire graph of the program flow can be reconstructed by applying
the recorded nonlinear addresses to the program source file containing
instruction address information. The trace buffer reduces the volume of
addresses that need to be kept to accurately reconstruct the program
flow.

The core cannot write to the Program Flow Trace Buffer, but it can read
the buffer indirectly by reading the Program Flow Trace Register. This
register reflects the address field of the current output of the FIFO trace
buffer. Reading this register causes the next entry in the buffer to
become the current output. The contents of the register and the buffer
after reset depend on the input signal DBG_PIN. If DBG_PIN is asserted
HIGH on the falling edge of RST, the contents of the register and the
buffer before reset are preserved. Otherwise, they are cleared to zero.

The trace buffer methodology uses the following principles:

♦ Only taken branches, or nonsequential program fetches, are
recorded.

♦ If the nonsequential instruction has a distinct destination (for
example: BR, BRR, CALL, or CALLR), only the instruction address
is recorded.

♦ If the nonsequential instruction does not have a distinct destination,
both the instruction address and the target address are recorded.
These include the instructions CALLA, RET, RETI, RETD, RETID,
RESTS, and any instruction with the PC register as a destination.
Note that MOV ##long_immediate, pc is also in this group although
it has a distinct target.

♦ Interrupts are treated as nonsequential instructions. However, they
can occur anywhere. Although the target (destination) is known, the
source, the last instruction being executed prior to the service
routine, cannot be easily derived. Therefore, the source address (the
last instruction being executed before servicing the interrupt) and the
destination address (the vector address) are both kept within the
trace buffer.

♦ Nonsequential addresses within the breakpoint handler are not
recorded (including the BR instruction that is at the TRAP vector
address).
OCEM Programming Model 8-11

♦ Nonsequential fetches that are due to the TRAP instruction are not
recorded.

♦ The read address of a MOVP instruction and the write address
of a MOVD instruction are not recorded although they appear on the
IAB. They are not used for fetching program instructions and do not
affect the normal sequential program flow.

8.2.8.1 Program Flow Trace Buffer Reading and Decoding

When reconstructing the program flow recorded in the Program Flow
Trace Buffer, alternate reading of the TREI bit in the Status 1 register and
the Program Flow Trace Register is required. The TREI bit is always read
first as reading the Program Flow Trace Register causes the next entry
in the buffer to become its current output. Both registers should be read
16 times to flush the entire buffer. Each pair of values read from the two
registers represent one entry in the trace buffer. Program flow
reconstruction should start from the last entry read and proceed
backwards. An entry with the tag bit set to one is a single entry record
that contains the source address of an instruction causing a
nonsequential program flow to a distinct target location. An entry with the
tag bit set to zero is part of a double entry record recording a
nonsequential program flow without a distinct target location. In a double
word record, the first entry contains the source address which is the
location of the instruction that caused the branch. The second entry in
the record contains the target address of the branch. Figure 8.4 shows a
program fragment with corresponding trace buffer entries.

The first few entries read from the trace buffer might have all bits set to
one. These entries are not used since the buffer was last flushed. They
contain no useful information and can be safely ignored. When the MVD
bit in the OCEM Status 1 register is set to one, the integrity of the
program flow trace cannot be guaranteed. This is because the core has
executed a MOVD instruction, which might have modified the program
code.
8-12 On-Chip Emulation Module (OCEM)

Figure 8.4 Program Flow Trace with Corresponding Trace Buffer Entries

(a) Program Fragment

 .
 .
 .

loc1:call ##loc2 ;distinct target location, single-entry record: A
 .
 .
 .

loc2:mov ##loc5, a1l
loc3:callaa1l ;nondistinct target location, two-entry record: B,C

 .
 .
 .

loc 4:ret ;nondistinct target location, two-entry record: F,G
 .
 .
 .

loc 5:ret ;nondistinct target location, two-entry record: D,E
 .
 .
 .

Out

1 loc1 A

B0 loc3

C0 loc5

D0 loc5

E0 loc3 & 2

F0 loc4

G0 loc1 & 2

.

.

.

.

.

.

Tag Bits

Address

In

(b) Flow Trace Buffer
OCEM Programming Model 8-13

8.3 OCEM Signals

This section defines the OCEM signals, which are organized according
to function in the following subsections:

♦ Section 8.3.1, “Service Interface”

♦ Section 8.3.2, “Boot Logic Interface”

♦ Section 8.3.3, “Core Memory Bus Interface”

♦ Section 8.3.4, “User-Defined Register Interface”

♦ Section 8.3.5, “Illegal Access Interface”

♦ Section 8.3.6, “Core Control Interface”

♦ Section 8.3.7, “Breakpoint Interface”

♦ Section 8.3.8, “ScanICE Interface”

♦ Section 8.3.9, “Clocking and Miscellaneous OCEM Signals”

Table 8.2 lists all OCEM and monitored CWDSP1650 core signals.

Table 8.2 OCEM Signal List

Interface Signal Mnemonic Signal Name
Input/
Output

Service Interface SV_A[3:0] Service Address Bus Input

SV_DI[15:0] Service Data Bus In Input

SV_DO[15:0] Service Data Bus Out Output

SV_G Service Chip Select Input

SV_R Service Read Enable Input

SV_W Service Write Enable Input

Boot Logic
Interface

BOOT_EN Boot Mode Enable Output

BOOT_PIN Boot Pin Input

DBG_EN Debug Mode Enable Output

DBG_PIN Debug Pin Input

URST_PIN User Reset Pin Input

(Sheet 1 of 3)
8-14 On-Chip Emulation Module (OCEM)

Core Memory
Bus Interface

IAB[15:0] Program Address Bus Input

PREN Program Read Enable Input

PWEN Program Write Enable Input

XAB[15:0] X-Memory Address Bus Input

XREN X-Memory Read Enable Input

XWEN X-Memory Write Enable Input

YAB[15:0] Y-Memory Address Bus Input

YREN Y-Memory Read Enable Input

YWEN Y-Memory Write Enable Input

User-Defined
Register Interface

LD_EXT_REG External Register Write Enable Input

RD_EXT_REG External Register Read Enable Input

Illegal Access
Interface

ILLE Illegal Breakpoint Enabled Output

ILLEGAL_ACCESS Illegal Access Input

Core Control
Interface

BLOCKLOOP Block-Repeat Detected Input

BRANCHING Branch Detected Input

BTI_SERVICE BI/TRAP Service Active Input

CLR_ISTAT Clear Interrupt Status Input

DVM Data Value Match Input

INT_SEEN Interrupt Indication Input

INVALID_PA Invalid Program Address Input

MVD_EXEC Move Data-to-Program Detected Input

SEL_TRACE[1:0] Select Address for Trace Input

TRACE_TAG Trace Tag Input

TRACE_UNWRITE Trace Unwrite Input

TRACE_WRITE Trace Write Input

TRAP_SERVICE Trap Service Indicator Input

Table 8.2 OCEM Signal List (Cont.)

Interface Signal Mnemonic Signal Name
Input/
Output

(Sheet 2 of 3)
OCEM Signals 8-15

8.3.1 Service Interface

This section describes the signals that support the OCEM service
interface. The service interface exists to imitate a static RAM style
interface, which eases OCEM interfacing with other CWDSP1650
modules. The service interface occupies 16 memory address locations
which can be mapped to anywhere in the data memory space. (Note that
the CWDSP1650 debugger assumes the OCEM is mapped to locations
0xF7F0 – 0xF7FF when using CDI debug.)

SV_A[3:0] Service Address Bus Input
SV_A is a four-bit address bus selecting an OCEM
register or counter for access.

Breakpoint Interface BI Breakpoint Interrupt Output

IACK_BI Breakpoint Interrupt Acknowledge Input

ScanICE Interface SCAN_ALERT Scan Breakpoint Alert Output

EXT_START_SCAN External Start Scan Output

OCEM_SCAN_ALERT OCEM Scan Alert Output

SCAN_EN Scan Enable Input

SCANICE_EN ScanICE Enable Input

SCAN_IN Scan Chain Input Input

SCAN_OUT Scan Chain Output Output

SCAN_WS Scan Write Strobe Input

TEST Test Mode Input

Clocking and
Miscellaneous
OCEM Signals

LD_CC Load Clock Control Register Input

EVENT External Event Input

RST Reset Input

SECOND_CYCLE Second Cycle Indicator Input

SUSPEND OCEM Suspended Mode Enable Input

Table 8.2 OCEM Signal List (Cont.)

Interface Signal Mnemonic Signal Name
Input/
Output

(Sheet 3 of 3)
8-16 On-Chip Emulation Module (OCEM)

SV_DI[15:0] Service Data Bus Input
SV_DI is a 16-bit data input bus through which the OCEM
registers and counters are written.

SV_DO[15:0] Service Data Bus Output
SV_DO is a 16-bit data output bus through which the
OCEM registers and counters are read.

SV_G Service Chip Select Input
Assert SV_G HIGH when accessing the OCEM.

SV_R Service Read Enable Input
Assert SV_R HIGH to read from the OCEM.

SV_W Service Write Enable Input
Assert SV_W HIGH to write to the OCEM.

8.3.2 Boot Logic Interface

This section describes the OCEM signals that interact with the boot logic
in a CWDSP1650 design. The OCEM samples the input signals in this
section only on the falling edge of RST when returning from a reset
operation. Note that the boot mechanism is always implemented off-core
in a CWDSP1650 design. Signals described in this section are most
likely to be connected to off-chip strap pins and to the off-core boot logic.

BOOT_EN Boot Mode Enable Output
The OCEM drives this signal HIGH when the BOOT bit
in the Status 1 Register is set to one, which indicates to
off-core boot logic that the boot mode is enabled.

BOOT_PIN Boot Pin Input
Asserting this signal HIGH on the falling edge of RST
sets the BOOT bit to one in the Status 1 register.
Connecting this signal to an off-chip strap pin allows
off-chip control of program boot loading.

DBG_EN Debug Mode Enabled Output
The OCEM drives this signal HIGH when the DBG bit in
Status 1 Register is one indicating debug mode to the
boot logic.

DBG_PIN Debug Pin Input
Asserting this signal HIGH on the falling edge of RST
sets the DBG bit to one in the Status 1 register.
OCEM Signals 8-17

Connecting this signal to an off-chip strap pin allows off-
chip control of on-chip debugging logic.

For example, the CWDSP1650 debugger forces a
combined boot and debug mode to boot load a monitor
program.

URST_PIN User Reset Pin Input
Asserting this signal HIGH on the falling edge of RST
sets the ERR bit to one in Status 1 register. Note that this
signal does not trigger a reset. Instead, it is intended to
be used by the CWDSP1650 debugger to detect a reset
caused by an external event.

For example, a user pushed an on-board reset button
while the monitor program is running. In this case, the
reset button should assert both RST and URST_PIN.

8.3.3 Core Memory Bus Interface

This section describes the OCEM interface to the memory buses of the
core. The OCEM monitors these core signals to trigger the OCEM
program and data breakpoints.

IAB[15:0] Program Address Bus Input
The core drives this 16-bit bus with the memory address
of either the program instruction or the program data.

PREN Program Read Enable Input
The core drives this signal HIGH to request program
data.

PWEN Program Write Enable Input
The core drives this signal HIGH to indicate a write to the
program memory space.

XAB[15:0] X-memory Address Bus Input
The core drives this 16-bit bus with the X-memory space
address.

XREN X-memory Read Enable Input
The core drives this signal HIGH to request data from the
X-memory address specified by XAB[15:0].

XWEN X-memory Write Enable Input
The core drives this signal HIGH to indicate a X-memory
data write to the address specified by XAB[15:0].
8-18 On-Chip Emulation Module (OCEM)

YAB[15:0] Y-memory Address Bus Input
The core drives this 16-bit bus with the Y-memory space
address.

YREN Y-memory Read Enable Input
The core drives this signal HIGH to request data from the
Y-memory address specified by YAB[15:0].

YWEN Y-memory Write Enable Input
The core drives this signal HIGH to indicate a Y-memory
data write to the address specified by YAB[15:0].

8.3.4 User-Defined Register Interface

This section describes signals driven by the core to access user-defined
registers. The OCEM monitors these core signals to trigger the OCEM
external register breakpoints.

LD_EXT_REG
External Register Write Enable Input
The core drives this signal HIGH during a user-defined
register write cycle.

RD_EXT_REG
External Register Read Enable Input
The core drives this signal HIGH during a user-defined
register read cycle.

8.3.5 Illegal Access Interface

These OCEM signals connect to a Bus Interface Unit (BIU) to provide
program protection from illegal memory accesses. The OCEM triggers
an illegal breakpoint when it detects an illegal access.

ILLE Illegal Breakpoint Enabled Output
When the ILLE bit of the Mode register is set to one, the
OCEM drives this signal HIGH to indicate that the illegal
access breakpoint is enabled.

ILLEGAL_ACCESS
Illegal Access Input
The BIU drives this signal HIGH to inform the OCEM that
an illegal access has occurred (such as an attempt to
access the OCEM registers not through the TRAP
interrupt service routine).
OCEM Signals 8-19

8.3.6 Core Control Interface

This section describes the core control signals that the OCEM decodes
to monitor various core activities.

BLOCKLOOP
Block-Repeat Detected Input
The core drives this signal HIGH whenever it detects a
block-repeat loop returning to its start address from its
end address (completing one loop.)

BRANCHING Branch Detected Input
The core drives this signal HIGH whenever a a branch-
type instruction causes a nonsequential program flow.

BTI_SERVICE
BI/TRAP Service Active Input
The core asserts this signal HIGH upon execution of a
TRAP/BI service routine.

CLR_ISTAT Clear Interrupt Status Input
The core asserts this signal HIGH when it services an
interrupt.

DVM Data Value Match Input
The core asserts this signal HIGH to indicate a match
between the content of the DVM register and the current
value on the core internal data bus.

INT_SEEN Interrupt Indication Input
The core asserts this signal HIGH when it is preparing to
service an interrupt.

INVALID_PA Invalid Program Address Input
The core asserts this signal HIGH when it is not using the
current address on the IAB to fetch an instruction. This
occurs when the core executes the MOVD and MOVP
instructions to write or read the program memory.

MVD_EXEC Move Data-to-Program Detected Input
The core asserts this signal HIGH after it executes a
MOVD instruction. The OCEM logs this event to indicate
potential corruption of program memory.
8-20 On-Chip Emulation Module (OCEM)

SEL_TRACE[1:0]
Select Addresses for Trace Input
The OCEM keeps a record of the last four addresses on
the IAB, including the current address. The core uses
SEL_TRACE[1:0] to specify which of these address
values is selected to be written to the OCEM trace buffer.

TRACE_TAG Trace Tag Input
The core asserts this signal HIGH to indicate that the
current program address is one of two addresses stored
for certain nonsequential program flow operations. The
OCEM stores the value of TRACE_TAG with the trace
address values in the trace buffer.

TRACE_UNWRITE
Trace Unwrite Input
The core drives this signal HIGH to unwrite the last trace
address from the trace buffer. An unwrite capability is
needed to erase a conditional branch trace buffer entry
when the branch is not taken.

TRACE_WRITE
Trace Write Input
The core drives this signal HIGH to write an entry into the
trace buffer.

TRAP_SERVICE
Trap Service Indicator Input
The core drives this signal HIGH when a software trap
occurs.

8.3.7 Breakpoint Interface

This section describes the OCEM signals interfacing with the breakpoint
interrupt logic of the core.

BI Breakpoint Interrupt Output
The OCEM asserts this signal HIGH to send a breakpoint
interrupt to the core.

IACK_BI Breakpoint Interrupt Acknowledge Input
The core asserts this signal HIGH to acknowledge a
breakpoint interrupt sent by the OCEM.
OCEM Signals 8-21

8.3.8 ScanICE Interface

This section describes the OCEM signals that support the ScanICE
Interface.

EXT_START_SCAN
External Start Scan Input
The ScanICE interface asserts this signal HIGH to force
a breakpoint interrupt allowing the scan controller to take
control of the CWDSP1650 core.

OCEM_SCAN_ALERT
OCEM Scan Alert Output
The OCEM asserts this signal when the core jumps to the
BI/TRAP vector address while in scanICE mode, which
indicates that the scanICE mode has been entered.

SCAN_EN Scan Enable Input
The ScanICE interface asserts this signal HIGH to
configure all registers in the OCEM scan chain in serial
scan mode.

SCANICE_EN ScanICE Enable Input
This signal is asserted HIGH to configure the OCEM for
ScanICE debug.

SCAN_IN Scan Chain Input Input
This input signal connects directly to the test input of the
first flip-flop in the OCEM scan chain.

SCAN_OUT Scan Chain Output Output
This output signal connects directly to the test output of
the last flip-flop in the OCEM scan chain.

SCAN_WS Scan Write Strobe Input
Asserting this signal HIGH disables all write strobe
memory signals from the core. Disabling all core write
transactions protects the contents of the off-core RAMs
during scan mode.

TEST Test Mode Input
When SCAN_EN is LOW, driving TEST HIGH forces all
registers in the OCEM scan chain to be load enabled,
implementing a capture function when in scan mode.
TEST should also be asserted whenever SCAN_EN is
asserted.
8-22 On-Chip Emulation Module (OCEM)

8.3.9 Clocking and Miscellaneous OCEM Signals

This section describes the clocking and miscellaneous signals of the
OCEM.

LD_CC Load Clock Control Register Input
This external input signal is the strobe for loading the
Clock Control register. This signal has a lower priority than
the START_SCAN or STOP_SCAN signals and should not
be used as a substitution for either of these signals (by
writing 0b1111 or 0b0000 to the CCU register.)

OCEM_CLK OCEM Clock Input
The CWDSP1650 CCU drives this signal to provide a
clock to the OCEM. The OCEM_CLK is extended by wait
states, as the CORE_CLK is.

EVENT External Event Input
Off-core glue logic drives this signal HIGH to initiate an
ABORT breakpoint.

RST Reset Input
Driving this signal HIGH resets the OCEM.

SECOND_CYCLE
Second Cycle Indicator Input
Off-core glue logic (normally a BIU) asserts this signal
HIGH for two ICU_CLK cycles when the core comes out
of a reset.

SUSPEND OCEM Suspended Mode Enable Input
Asserting this signal HIGH forces the OCEM into
suspended mode, which ensures that the OCEM
registers are not clocked. In suspended mode the OCEM
consumes negligible power and is effectively isolated
from the other CWDSP1650 modules.
OCEM Signals 8-23

8.4 OCEM Breakpoints

This section describes the operations of different OCEM breakpoints.
The breakpoints available for the OCEM are:

♦ Program address

♦ Data address

♦ Data value

♦ Combined data address and data value

♦ External register

♦ Abort

♦ Illegal access

♦ Branch

♦ Block repeat

♦ Interrupt

♦ Single step

♦ Program flow trace buffer full

8.4.1 Program Address Breakpoint

The OCEM supports three program address breakpoints. Each
breakpoint has three controlling components:

♦ A program address breakpoint register to hold the breakpoint
address

♦ A program address breakpoint counter that holds the number of
matches needed until a breakpoint is issued

♦ An enable bit in the Mode register
8-24 On-Chip Emulation Module (OCEM)

Table 8.3 lists these three breakpoints and components. For more
information on any of these counters or registers, see Section 8.2,
“OCEM Programming Model.”

When the core fetches an instruction, the OCEM detects a match
between the address appearing on the instruction address bus (IAB) and
an address in any of the Program Address Breakpoint Registers. If a
match with any of the registers occurs while the corresponding program
address breakpoint is enabled, the OCEM decrements the appropriate
breakpoint counter by one. The OCEM also triggers a breakpoint if the
match occurs when the value held by the counter is one or zero. A
counter stops decrementing once it reaches zero. A program address
breakpoint stops a program at the specified location. The instruction at
that location is not executed until after the breakpoint is serviced. The
OCEM ignores addresses on the IAB that are not used for valid program
instruction fetches.

To cause a breakpoint on every occurrence of a program address, the
address counter should be set to either zero or one. To cause a
breakpoint on the nth occurrence only, the counter should be set to n.
Writing zeros to the P1E, P2E, and P3E bits within the OCEM Mode
Register disables the program address breakpoints. The PA1, PA2, and
PA3 bits in the Status 0 Register indicate the source of the program
address breakpoint.

Table 8.3 Program Address Breakpoint Components

Program
Address

Breakpoint #

Program Address
Breakpoint

Register

Program Address
Breakpoint

Counter
Mode Register

Enable Bit

1 1 1 PE1

2 2 2 PE2

3 3 3 PE3
OCEM Breakpoints 8-25

8.4.2 Data Address Breakpoint

A data address breakpoint occurs on a match between the OCEM Data
Address Register and the CWDSP1650 data address buses, XAB and
YAB. The OCEM sets the DA bit in the Status 0 Register to one when it
detects a data address breakpoint.

The Data Address Mask Register allows the data address breakpoint to
expand into an address space rather than a singular address. A one in
any bit in this register masks the corresponding bit in the address match.
A match occurs when all other bits in the Data Address Register and the
data address buses are equal.

The data address breakpoints are separately enabled for read and write
transactions. To break on read transactions, set the DARE bit in the
Mode Register to one. To break on write transactions, set the DAWE bit
in the Mode Register to one.

A data address breakpoint is serviced on the completion of the data
transaction causing the breakpoint. Hence, the breakpoint is serviced at
least two cycles after the prefetch of the instruction causing the
breakpoint. Depending on whether the instruction causing the breakpoint
is followed by a multicycle instruction, up to two instructions are executed
before the core executes the breakpoint service routine.

8.4.3 Data Value Breakpoint

The data value breakpoint is activated when the OCEM detects a data
match between the CWDSP1650 internal data bus and the contents of
the DVM Register. Note that a data value breakpoint is due only to a
matched data during memory transactions. The OCEM sets the DV bit in
the Status 0 Register to one when it detects a data value breakpoint.

The data value breakpoint is separately enabled for read and write
transactions. To break on read transactions, set the DVRE bit in the
Mode Register to one. To break on write transactions, set the DVWE bit
in the Mode Register to one.

A data value breakpoint is serviced on the completion of the data
transaction causing the breakpoint. Hence, the breakpoint is serviced at
least two cycles after the prefetch of the instruction causing the
breakpoint. Depending on whether or not the instruction causing the
8-26 On-Chip Emulation Module (OCEM)

breakpoint is followed by a multicycle instruction, up to two instructions
can be executed before the core executes the breakpoint service routine.

8.4.4 Combined Data Address and Data Value Breakpoints

To enable the OCEM to detect combined data address and data value
conditions, the CDVAE bit in the Mode Register should be set to one.
Note that the DARE and DVRE bits and/or the DAWE and DVWE bits
must also be set to one for the OCEM to detect a dual breakpoint
condition.

When a combination of data address and data value breakpoints is
enabled, a breakpoint is triggered only when both a data value match
and a data address match occur. A combined data address and data
value breakpoint is serviced on the completion of the data transaction
causing the breakpoint.

8.4.5 External Register Breakpoint

An external register breakpoint occurs when the CWDSP1650 core
accesses one of its four user-defined registers. The OCEM sets the
EREG bit to one in the Status 0 Register when it detects an external
register breakpoint.

The external register breakpoint is enabled separately for read and write
transactions. To break on read transactions, the EXTRE bit in the Mode
Register is set to one. To break on write transactions, set the EXTWE bit
in the Mode Register to one. An external register breakpoint is serviced
on the completion of an external register transaction.

8.4.6 Abort Breakpoint

An external breakpoint occurs when the EVENT input of the OCEM is
asserted. The OCEM registers the EVENT input on the rising edge of
OCEM_CLK. EVENT should be synchronized with OCEM_CLK before
entering the OCEM. The abort breakpoint is always enabled. The OCEM
sets the ABORT bit of Status 0 Register when it detects this breakpoint.
OCEM Breakpoints 8-27

8.4.7 Illegal Access Breakpoint

One feature of the OCEM is to protect the reserved mail box area
(addresses 0xF400 – 0xF7DF) and the OCEM registers (addresses
0xF7F0 – 0xF7FF) from illegal accesses. Legal access of the mailbox
and register spaces occur only through the breakpoint handler (the
routine that is executed as a result of the TRAP/BI interrupt). Attempting
to access the mailbox or OCEM space through anything other than the
breakpoint routine causes a breakpoint and sets the ILL bit to one in the
Status 0 Register. The illegal breakpoint is enabled/disabled through the
ILLE bit within the Mode Register. Both the ILLE bit in the Mode Register
and the ILL bit in the Status 0 Register must be written to through the
breakpoint handler. Any other attempts to write to these bits are disabled.

The illegal breakpoint mechanism also protects the breakpoint handler
routine from other illegal accesses, such as when a user program jumps
into the breakpoint handler not through a TRAP/BI interrupt. In such a
case, if the handler accesses the mailbox area, it will trigger an illegal
breakpoint.

8.4.8 Branch and Block Repeat Breakpoints

The OCEM activates a branch breakpoint when it detects a branch-type
instruction. A branch-type instruction could be one of the following: BR,
BRR, CALL, CALLR, CALLA, RET, RETD, RETS, RETI, RETID, and any
instruction that has the program counter register (PC) in the core as
destination. The OCEM activates a block repeat breakpoint when it
detects the switch from the last to the first address in a block repeat
instruction (BKREP). No breakpoint is triggered when the core fetches
the first instruction for the first time when entering the block repeat loop.
The BR bit in the Mode Register enables/disables the branch breakpoint.
The BKRE bit in the Mode Register enables/disables the block repeat
breakpoint. The OCEM sets the BR bit in the Status 0 register when it
detects either a branch breakpoint or a block repeat breakpoint.

Note that the REP instruction does not cause a branch breakpoint. The
breakpoint occurs for taken branches only. The next instruction executed
after returning from the breakpoint service routine is at the target
address. Two exceptions are the BRR and CALLR instructions, where the
next instruction executed after returning from the breakpoint service
routine is at the target address plus one.
8-28 On-Chip Emulation Module (OCEM)

8.4.9 Interrupt Breakpoint

An interrupt breakpoint occurs when the OCEM detects the core is going
to service one of four interrupts: INT0, INT1, INT2, or NMI. The core
services this breakpoint and then services the interrupt causing the
breakpoint before returning control to the interrupted program. The
OCEM sets the INT bit in the Status 0 Register to one when an interrupt
breakpoint occurs. Setting the INTE bit in the Mode Register enables the
interrupt breakpoint.

8.4.10 Single-Step Operation

Setting the SSE bit to one in the Mode Register enables single-step
operation. In the single-step mode, the OCEM automatically breaks after
each instruction the core executes. The OCEM does not set a specific
status bit for a single-step breakpoint.

8.4.11 Program Flow Trace Buffer Full Breakpoint

Setting the TBE bit in the Mode Register to one enables the trace buffer
full breakpoint. The OCEM sets the TBF bit in the Status 0 Register to
one when the trace buffer is full. The trace buffer is a 16-stage FIFO
buffer logging the most recent nonsequential operations. A nonsequential
program flow can be recorded with one or two buffer entries. To prevent
data loss due to an overflow, the trace buffer full breakpoint is activated
when the buffer has either 15 or 16 valid entries. Once the whole trace
buffer is read, the OCEM fills it with all ones, thus isolating new incoming
addresses from the old ones.
OCEM Breakpoints 8-29

8-30 On-Chip Emulation Module (OCEM)

Chapter 9
ScanICE
This chapter describes the CWDSP1650 Scan based In-Circuit
Emulation (or ScanICE) implementation, which is an optional module for
embedded debugging and emulation. This chapter covers the operation
and interface of the CWDSP1650 ScanICE implementation.

Scan based In-Circuit Emulation (ScanICE) enables complete
observation and control of circuit states for debug purposes through
circuitry included in most devices for testing during manufacture. This
technique allows the entire processor state to be clocked out of the
design and, if desired, a modified state to be clocked back in over a serial
bus (or scan chain) using a lower frequency clock. Inserting a scan chain
into a core design is normally performed by a scan insertion software tool
as part of the Design-For-Test process. A major benefit of the ScanICE
approach is that very few package pins and additional logic are required
to implement a comprehensive debugging system, thus removing the
need for debug prototypes and reducing the failure risk for production
silicon.

This chapter contains the following sections:

♦ Section 9.1, “ScanICE Power Saving Registers”

♦ Section 9.2, “ScanICE Requirements”

♦ Section 9.3, “ScanICE Interface”

♦ Section 9.4, “CWDSP1650 ScanICE Support”

♦ Section 9.5, “Memory Access during ScanICE”

♦ Section 9.6, “ScanICE Reset”

This chapter describes ScanICE designs in general terms whenever
possible, but uses the CWDSP1650 Reference Device design as an
example when needed. If you do not recognize some of the ScanICE
9-1

signal names, they are most likely Reference Device pins described in
the CWDSP1650 Reference Device User’s Guide.

9.1 ScanICE Power Saving Registers

Figure 9.1 illustrates a power-saving, scan-inserted register bank.

Figure 9.1 Power Saving Register with Scan Inserted

There are two input pins that control its mode of operation, SCAN_EN
and TEST, that are common for every register on a particular scan chain

SCAN_EN

SCAN_EN

GCLK

GCLK

TEST

Load Enable

Clock

D

LE*

QSCAN_EN
9-2 ScanICE

and are routed to each flip-flop in the bank. Table 9.1 lists the ScanICE
operations enabled with the SCAN_EN and TEST pins.

During production testing, test data is first shifted into the power saving
registers using the Serial Scan mode. Then a capture cycle forces every
register to be clocked and load-enabled. The result of this capture cycle
is then shifted out of the device and compared with the desired state.

It is common for all registers of a design to be located on a single scan
chain. In systems with significant amounts of memory, an additional scan
chain may be provided specifically for memory access. Since the core
will normally contain many thousands of register bits, the main scan
chain could take many thousands of scan clock cycles to completely
clock in/out of the chip. This is not significant for core testing since the
scan clock will usually be running at speeds in the order of 5 MHz.
However, when the memory block fills and block reads or program
loading is required, the scan delay time could become unacceptably
long. A second and much shorter scan chain, dedicated for memory
accesses, can be added to improve overall scan performance. In this
scenario the core generates the addresses for memory accesses using
its internal address registers while data is loaded to or read from the
memory scan chain.

In a typical CWDSP1650 system, ScanICE replaces the functionality
provided by a software monitor program, by giving read/write access to
core registers, OCEM registers, and memory. The key difference is that
a monitor program typically communicates this information through an
off-chip bus to a memory mapped mailbox, while ScanICE utilizes a
serial link to an off-chip scan controller.

Table 9.1 ScanICE Operational Modes

TEST SCAN_EN Operation Mode

0 0 Normal

x 1 Serial Scan

1 0 Capture
ScanICE Power Saving Registers 9-3

9.2 ScanICE Requirements

During scan, when the contents of every flip-flop in a particular scan
chain is serially shifted out of the device, the clock to each flip-flop is
sourced by the off-chip scan controller. Since this clock is different from
the one used in normal operation, the clock-controller must stop and
switch clocks before scanning can begin. It is important that when the
main clock is stopped, the core is in a stable state; all data that a
programmer expects to be stored in the registers is stored, and the core
is not in the middle of a wait-stated access to memory or off-chip
peripherals. To achieve this condition, the CWDSP1650 enters scan
mode only when it has just executed a breakpoint interrupt or software
TRAP. By ensuring that two NOPs are read from the interrupt service
vector, the clock can be stopped cleanly while executing these
instructions, guaranteeing the state of the pipeline.

Proper operation of the OCEM is integral to the functioning of ScanICE.
A block diagram of a typical configuration including the core, OCEM, and
ScanICE supporting circuitry is illustrated in Figure 9.2.
9-4 ScanICE

Figure 9.2 ScanICE Support in a CWDSP1650 System

The following sections describe the functionality of the main blocks of
Figure 9.2 that control the operation of ScanICE. It is noted that although
the CWDSP1650, CCU and OCEM are supplied as hard-macros, the
Scan Interface Logic and Scan Memory Interface are application
dependent and must be designed specifically into each target system.

Scan Interface Logic

START_SCAN
STOP_SCAN

EXT_START_SCAN

OCEM_SCAN_ALERT

Memory Control

BTI_SERVICE

CCU

OCEM

CWDSP1650

Scan Memory
Interface

Memory and
External

Registers

CORE_CLK
OCEM_CLK

BI

DBG_PIN

BOOT_PIN
SCANICE_EN

EDB (Core)

EDB

Data buses

Six-pin Scan
Interface

SECOND_CYCLE

MASTER
SCAN_CLK

Core
ScanICE Requirements 9-5

9.3 ScanICE Interface

Table 9.2 details the six-wire bus between the scan interface and the off-
chip scan controller in Figure 9.2 as implemented in the CWDSP1650
Reference Device. For a more detailed description of these signals
(pins), please refer to the CWDSP1650 Reference Device User’s Guide.

This six-pin interface serially loads the Scan Control Register, which
controls all ScanICE operations while the CWDSP1650 is in the Serial
Scan Mode. For more information on the Scan Control Register, see
Section 9.3.1, “Scan Control Register.”

Scan interface logic details are design dependent, but a block diagram
of an example circuit is shown in Figure 9.3. The main elements from the
figure are further described in the following subsections.

Table 9.2 Six-pin ScanICE Interface

Signal

Input /
Output
to ASIC Function

EXT_SCAN_IN Input Serial scan data input

EXT_SCAN_OUT Output Serial scan data output

EXT_SCAN_CTRL Input Start of scan indication to on-chip scan interface

SCAN_CLK Input Scan clock input

SCAN_ALERT Output Event indication output from scan controllers

EXT_SCAN_RST Input Resets on-chip scan control logic
9-6 ScanICE

Figure 9.3 Example Scan Interface

9.3.1 Scan Control Register

To program the Scan Control Register, first serially load the shadow
register with EXT_SCAN_IN data clocked by SCAN_CLK. Then parallel
load this shadow register data to the Scan Control Register at the end
of the programming sequence. This technique ensures that the control
lines do not change state incorrectly during the serial information
transfer.

The shadow register is selected as the destination of the EXT_SCAN_IN
signal whenever the EXT_SCAN_CTRL signal is asserted. Once all the
required bits have been clocked into the shadow register, the
EXT_SCAN_CTRL signal is deasserted and the parallel load to the Scan
Control Register occurs on the second next edge of SCAN_CLK.

The length and function of the Scan Control Register will vary with each
application depending on the variety of functions ScanICE has to

Scan Instruction
Register

Control Logic

0[9:1][11:10]

ScanICE
Control

External
Scan Logic

Control

Clock
Gating

EXT_SCAN_IN

EXT_SCAN_CTRL

SCAN_CLK

OR

OR

EXT_SCAN_OUTScan

Reset Pin

Shadow

Main Reset

Scan Logic Reset

Scan Logic Controls

Scan Clocks

OCEM_SCAN_ALERT ScanICE Controls

Scan Control Register

Chain
Outputs

EXT_SCAN_RST
ScanICE Interface 9-7

perform. Figure 9.4 shows the bit-fields of an example CWDSP1650
Scan Control Register.

Figure 9.4 Scan Control Register

STSC Stop Scan
When asserted HIGH this bit forces exit from scan mode.
Note that the CCU waits for this bit to be deasserted
before restarting the CWDSP1650 clocks.

ESS External Start Scan
When asserted HIGH this bit asserts BI, allowing the
off-chip scan controller to take control of the
CWDSP1650.

CCMR Clock Core and Memory Register
When asserted HIGH this bit routes SCAN_CLK to both
the CWDSP1650 and the memory interface logic.

SCNE Scan Enable
This bit configures the OCEM for ScanICE debug and
controls what happens when a Breakpoint Interrupt or
TRAP is detected.

BTM Boot Mode
This bit drives the BOOT_PIN signal of the OCEM.

DBGM Debug Mode
This bit drives the DEBUG_PIN signal of the OCEM.

EDBC EDB Control
In the Scan Memory Interface logic, the source of the
EDB can be either the EDB from the CWDSP1650 core
or an internal 16-bit register loaded through the Scan
Interface Logic. EDBC selects between either the EDB or
a 16-bit register for EDB control.

FFSE Scan Flip-Flop Scan Enable Input
This bit drives the Scan Enable input of every flip-flop on
the scan chain selected by the SCS bit.

STSC ESS CCMR SCNE BTM DBGM EDBC FFSE FFT SCS MWD SCRST
9-8 ScanICE

FFT Scan Flip-Flop Test Input
This bit drives the TEST input of every flip-flop on the
scan chain selected by the SCS bit.

SCS Scan Chain Select
This bit selects between the available target scan chains.
In the CWDSP1650 Reference Device, there are two
scan chains in addition to the shadow register in the Scan
Interface Logic; the main scan chain and a 16-bit scan
chain for the Scan Memory Interface. In an application
with more than two scan chains, SCS may be a multi-bit
field.

MWD Memory Write Disable
When asserted HIGH, this bit disables all memory write
enable signals, thus protecting the CWDSP1650 memory
during scan operations.

SCRST Scan Control Reset
This bit connects to the reset signals of all CWDSP1650
logic blocks except the scan interface logic. This allows
resetting of all CWDSP1650 components during a serial
scan, without affecting the current scan operation.

9.3.2 ScanICE Control

The ScanICE control block in Figure 9.3 controls the entry and exit from
scan mode. There are several ways in which scan mode can be entered:

♦ Hardware Breakpoint

♦ Software TRAP

♦ Debug Boot

♦ Debug Reset

♦ Abort

Figure 9.5 shows an example entry into Scan Mode through an OCEM
breakpoint interrupt. This example is equally valid for any of the scan
mode entry methods.
ScanICE Interface 9-9

Figure 9.5 Entry to Scan Using a Breakpoint Interrupt

The assertion of OCEM_SCAN_ALERT indicates entry into scan mode,
but the triggering of the OCEM BI signal differs. The
OCEM_SCAN_ALERT assertion is synchronous to BTI_SERVICE when
SCANICE_EN is asserted. For hardware breakpoints and the software
TRAP, BI is asserted in the usual way by the OCEM and the core. The
external scan controller initiates scan by asserting the ESS bit in the
Scan Control Register, which drives the EXT_START_SCAN signal from
the Scan Interface. Finally a debug boot initiates a breakpoint interrupt
immediately following reset through dedicated circuitry in the OCEM.

Following assertion of OCEM_SCAN_ALERT, the ScanICE Interface
asserts EXT_START_SCAN to control the CCU, asserts SCAN_FLAG to
indicate entry into scan mode for on-chip logic and asserts
SCAN_ALERT to inform the off-chip scan controller that it now has
control of the CWDSP1650 and support logic.

MASTER

CORE_CLK

IAB

IDB

BI

IACK_BI

INSTR_REG

BTI_SERVICE

OCEM_SCAN_ALERT

START_SCAN

SCAN_FLAG

SCAN_ALERT

Note: INSTR_REG - Contents of the instruction register
inside the CWDSP1650.

0104 0105 0106 0102 0002 0003 0004

4182 0102 5820 8de0 0000

0000 4182 0102 5820 8de0 0000
9-10 ScanICE

The only mechanism for leaving the Scan Mode is through the STSC bit
in the Scan Control Register. This bit must be set to one and cleared
back to zero before the CCU clocks stopped during scan mode are
started again. Figure 9.6 shows the CWDSP1650 leaving Scan Mode
through the STSC bit.

Figure 9.6 Stop Scan Mode

9.3.3 External Scan Logic Control

Each register on a destination scan chain has two inputs that control its
operation; SCAN_EN and TEST. The function of these signals is
described in Section 9.1, “ScanICE Power Saving Registers.” The
External Scan Logic Control block drives the Scan Enable and Test
inputs of each scan chain depending on the state of the SCNE, FFT,
CCMR and SCS bits of the Scan Control Register. See Section 9.3.1,
“Scan Control Register,” for more information on these bits.

IDB

MASTER

STOP_SCAN

CORE_CLK

BTI_SERVICE

OCEM_SCAN_ALERT

SCAN_FLAG

SCAN_ALERT

IAB

INSTR_REG

0004 0102 0103 0104

0000 8de0 abab 4182

45c0 (RETI) 8de0
ScanICE Interface 9-11

9.3.4 Clock Gating

It is often convenient to adjust which scan chains the scan-clock controls.
This is handled by the Clock Gating block and configured with the CCMR
and SCS bits of the Scan Control Register. See Section 9.3.1, “Scan
Control Register,” for more information on these bits.

9.4 CWDSP1650 ScanICE Support

The OCEM and CCU module both contain special features to assist the
ScanICE interface.

9.4.1 OCEM ScanICE Support

To support ScanICE, the OCEM has the following features:

♦ A Breakpoint Interrupt is triggered when EXT_START_SCAN from
the Scan Interface is asserted.

♦ A Breakpoint Interrupt is triggered when BOOT_PIN, DBG_PIN,
SCANICE_EN, and SECOND_CYCLE are asserted. This forces
entry to scan mode during a debug-boot before any instructions are
decoded.

♦ OCEM_SCAN_ALERT is asserted whenever BTI_SERVICE and
SCANICE_EN are asserted.

♦ All OCEM registers are scan enabled, which allows hardware
breakpoints to be set when in scan mode by the scan controller.

9.4.2 CCU ScanICE Support

The CCU has the following features to support ScanICE:

♦ SCAN_CLK is multiplexed with MASTER clock to source the main
clock and during scan mode, SCAN_CLK is routed to most output
clocks.

♦ The START_SCAN and STOP_SCAN signals control the switching to
and from scan mode as indicated in Figure 9.5 and Figure 9.6. The
CCU controls the clean stopping and switching of clocks.
9-12 ScanICE

♦ During scan mode, the state of the Clock Control Register before
entering scan mode is stored in a shadow register. This shadow
register is scan enabled, allowing the resumption clock speed on
leaving scan mode to be changed and the memory clock skews to
be programmed.

9.5 Memory Access during ScanICE

During a conventional debug when a monitor program runs on the core,
access to memory is carried out in the same way as during normal
operation. When in scan mode, this would involve preparing the core
through the scan chain for a memory read/write operation and would thus
require a complete scan for every data value. This is prohibitively slow
when large blocks of data or program memory must be transferred
between the debugger and a device. A faster approach is to provide an
alternative scan enabled source for data to the EDB and destination for
the core input buses. By using a separate and much smaller scan chain,
the time for accessing memory can be considerably reduced.

Figure 9.7 shows the support provided on the CWDSP1650 Reference
Device for memory access.
Memory Access during ScanICE 9-13

Figure 9.7 Example ScanICE Memory Access Scheme

A 16-bit register with its own 16-bit scan chain is located within the
Memory Scan Interface block; this register will be referred to as the
Memory Register. The Memory Register output is multiplexed to the EDB
as determined by the EDBC bit in the Scan Control Register. In this way,
the Memory Register can be quickly loaded during ScanICE, and the
data presented to all on-chip memory blocks. The input to the Memory
Register is derived from the data-buses entering the core; in Figure 9.7,
just the memory data buses are shown. The input bus selected is
determined by the various read enable control signals driven by the core.

During a read or write memory access when in scan mode, the core is
configured to supply the appropriate addresses and control signals for
the memory. For contiguous blocks of data, the core internal address
modification circuitry can increment the presented address on
successive clock cycles, thus avoiding the need to scan the core for
every data value. For a memory read the Memory Register must be

PRAM

XRAM

XDB

IDB

YDB

EDB

DI

DI

DO

DO

DO

DI

YRAM

BIU
AD

AD

AD

XAB

YAB

IAB

EXT_SCAN_OUT

Scan Memory Interface

EDBC

CWDSP1650
Core

EXT_SCAN_IN
9-14 ScanICE

clocked to load the data being read, and the core must be clocked to
update the address it is sourcing; this is the reason for the CCWR bit in
the Scan Control Register.

9.6 ScanICE Reset

A complication that arises when developing embedded core debug
systems is handling a reset. There are numerous methods for triggering
a reset, the most common being board-level push-buttons and debugger
commands. On leaving reset it is often useful to be able to configure the
device for a particular mode of operation (Boot pin and Debug pin, for
example, that are driven to the OCEM). On the CWDSP1650 Reference
Device, strap or configuration pins are brought out to the chip periphery,
limiting the configurability and flexibility of the pin-count. The Scan
Control Register offers a unique opportunity to extend the configurability
of a device during debug without impacting the pin-count. This method
is illustrated above by including the Boot and Debug Pin bits in the Scan
Control Register, and can be extended to include other functions as
needed.

One of the problems with embedded debug is how to communicate to
the debug software that a hardware reset has occurred. The OCEM sets
the ERR bit in Status 1 Register to one when a reset occurs during a
breakpoint service routine. This tells the debugger that its view of the
core state may be incorrect. This concept could be extended by including
a bit in the Scan Interface Control Shadow Register that is set during
normal operation. When a reset occurs, this bit would be cleared and the
next time the scan controller does anything it will see that a reset was
executed since the last scan. This bit would then probably reset the
device again, but also ensure that the Scan Control Register was
appropriately set up when releasing reset.

For this reset scheme to work, it is required that the SCRST bit in the
Scan Control Register not reset the scan control logic. This can be
achieved as indicated in Figure 9.3. This ScanICE reset method makes
it possible to first reset the entire device through a Reset Pin, reset the
device again with SCRST, and guarantee both the state of the device and
how it will be configured after reset.
ScanICE Reset 9-15

9-16 ScanICE

Chapter 10
Specifications
This chapter specifies the physical and electrical characteristics of the
CWDSP1650 DSP core. It contains the following sections:

♦ Section 10.1, “Physical Specifications”

♦ Section 10.2, “AC Timing Diagrams”

10.1 Physical Specifications

Table 10.1 lists the dimensions of the CWDSP1650 core in LSI Logic’s
G10 technology.

10.2 AC Timing Diagrams

The CWDSP1650 can use various clocks for different operations. The
Clock Control Unit (CCU) selects the appropriate clock for the current
transaction needs. Specific information about the CCU and the clocks it
generates can be found in Section 6.7, “Clock Control Unit (CCU).”

The input setup time is defined from the signal valid to the rising edge
of the clock and the input hold time is defined from the rising edge of the
clock to the signal valid. For input setup times, the driver must drive the
signal valid before any receivers need it. For input hold times, the driver
must hold the signal valid longer than needed by any receiver.

Table 10.1 CWDSP1650 Physical Layout Size

Core Technology Width Height Total Area 1

1. This figure excludes power rings.

CWDSP1650 G10 2.0 mm 2.5 mm 5.0 mm2
10-1

The output Valid and Invalid delay times are defined from the rising edge
of the clock to the signal valid.

The section is further divided into the following subsections:

♦ Section 10.2.1, “OCEM Registers”

♦ Section 10.2.2, “Data and Program Memory”

♦ Section 10.2.3, “User-Defined Registers”

10.2.1 OCEM Registers

This section illustrates waveforms for reading and writing the OCEM
registers. The OCEM registers are memory-mapped to location 0xF7F0
to 0xF7FF in the data memory space and can be accessed with or
without wait states. The OCEM provides a service interface to mimic a
static RAM interface that allows the OCEM to interface with the core
through a bus interface unit (BIU) as a memory device.

Figure 10.1 and Figure 10.2 show timing diagrams for writing and
reading the OCEM. Table 10.2 lists the related timing values from these
figures.

Figure 10.1 Writing the OCEM

OCEM_CLK

SV_DI

SV_G

SV_W

tsgitsgv

tsihtsis

tsah
tsas

SV_A

tswv tswi
10-2 Specifications

Figure 10.2 Reading the OCEM

Table 10.2 OCEM Access Timing Constraints

Parameter Timing Constraint Min (ns) Max (ns) Remark

tsas SV_A Setup 24 – Required by OCEM

tsah SV_A Hold – 1 Required by OCEM

tsis SV_DI Setup 22 – Required by OCEM

tsih SV_DI Hold – 1 Required by OCEM

tsov SV_DO Valid 2 – –

tsoi SV_DO Invalid – 1.1 –

tsgv SV_G Valid – 1.6 Required by OCEM

tsgi SV_G Invalid 1 – Required by OCEM

tsrv SV_R Valid – 1.6 Required by OCEM

tsri SV_R Invalid 1 – Required by OCEM

tswv SV_W Valid – 1.8 Required by OCEM

tswi SV_W Invalid 1.3 – Required by OCEM

OCEM_CLK

SV_D0

SV_G

SV_R

tsrv

tsoitsov

SV_A

tsri
AC Timing Diagrams 10-3

10.2.2 Data and Program Memory

The figures in this section show the optional memory clocks, required for
synchronous memory only. Typically, a CCU generates these memory
clocks to optimize performance in any application. The core facilitates
optimal data memory clocking with the signal RAM_WT. RAM_WT is an
early indicator of a write transaction with the data memory. In designs
where the data memory is in the critical path, RAM_WT can be used to
turn off the data memory clock early in a read transaction cycle.

Note: To interface with asynchronous memory, external strobing
logic might be required.

The reminder of this section contains the following timing figures and
tables:

♦ Figure 10.3, “Data Memory Write Access”

♦ Figure 10.4, “Data Memory Read Access”

♦ Figure 10.5, “Program Memory Write Access”

♦ Figure 10.6, “Program Memory Read Access”

♦ Figure 10.7, “Memory Access with Wait State”

♦ Table 10.3, “Memory Interface Timing Constraints”

Figure 10.3 Data Memory Write Access

Write Cycle

tdaitdav

tedv tedi

tdcv tdci

tdmsw

CORE_CLK

XAB/YAB

EDB

XWEN/YWEN

DMEM_CLK*

* Required for synchronous memory only.
10-4 Specifications

Figure 10.4 Data Memory Read Access

Figure 10.5 Program Memory Write Access

Read Cycle

txs/tys
txh/tyh

tdcv tdci

tdmsr

CORE_CLK

XAB/YAB

XDB/YDB

XREN/YREN

DMEM_CLK*

* Required for synchronous memory only.

Write Cycle

tpaitpav

tedv tedi

tpcv tpci

tpmsw

CORE_CLK

IAB

EDB

PWEN

PMEM_CLK*

* Required for synchronous memory only.
AC Timing Diagrams 10-5

Figure 10.6 Program Memory Read Access

Figure 10.7 shows the waveforms for a data memory read with one wait
state. Because the data read transaction has one wait state, WAIT_CTL
is held asserted for one cycle. The address bus XAB and the memory
read enable XREN are kept stable during the wait cycle. The machine
cycle is effectively extended to two MCLK cycles. The core reads the
data from EDB at the end of the second cycle.

Read Cycle

tis
tih

tpcv tpci

tpmsr

CORE_CLK

IAB

IDB

PREN

PMEM_CLK*

* Required for synchronous memory only.
10-6 Specifications

Figure 10.7 Memory Access with Wait State

Table 10.3 Memory Interface Timing Constraints

Parameter Timing Constraint
Min
(ns)

Max
(ns) Remark

tdav Data Address Valid – 3.8 –

tdai Data Address Invalid 0 – –

tedv External Data Valid – 8.6 –

tedi External Data Invalid 0 – –

tdcv Data Controls Valid – 4.1 –

tdci Data Controls Invalid 0 – –

txs X Data Setup 9.7 – Required by core.

txh X Data Hold 2 – Required by core.

tys Y Data Setup 9.7 – Required by core.

tyh Y Data Hold 2 – Required by core.

(Sheet 1 of 2)

Access Cycle 1 Wait State

txs

twh

MCLK

CORE_CLK

XAB

XDB

XREN

WAIT_CTL

twl
AC Timing Diagrams 10-7

tpav Program Address Valid – 10.2 –

tpai Program Address Invalid 0 – –

tpcv Program Controls Valid – 11.6 –

tpci Program Controls Invalid 0 – Required by core.

tis IDB (Program Data) Setup 1 – Required by core.

tih IDB (Program Data) Hold 2 – Required by core.

tdmsw DMEM_CLK Write Skew1 See Note

tdmsr DMEM_CLK Read Skew2 See Note

tpmsw PMEM_CLK Write Skew3 See Note

tpmsr PMEM_CLK Read Skew4 See Note

twh WAIT_CTL High Setup 18.6 – Required by core.

twl WAIT_CTL Low Setup 20.8 – Required by core.

1. max(tdav, tedv, tdcv) + memory setup
2. cycle time - txs/tys - 1 ns
3. max(tpav, tedv, tpcv,) + memory setup
4. cycle time - tis - 1 ns

Table 10.3 Memory Interface Timing Constraints (Cont.)

Parameter Timing Constraint
Min
(ns)

Max
(ns) Remark

(Sheet 2 of 2)
10-8 Specifications

10.2.3 User-Defined Registers

Figure 10.8 shows the waveforms for both a user-defined register read
and a user-defined register write. Table 10.4 lists the timing constraints
shown in this figure.

Figure 10.8 User-Defined Register Access

CORE_CLK

SEL_EXT_REG_RD

EDB

EXT_IN[15:0]

LD_EXT_REG

RD_EXT_REG

tlexitlexv

trexv trexi

texhtexs

teditedv

tseritserv

tsewitsewv

SEL_EXT_REG_WT
AC Timing Diagrams 10-9

Table 10.4 User-Defined Register Interface Timing Values

Parameter Timing Constraint
Min
(ns)

Max
(ns) Remarks

tsewv SEL_EXT_REG_WT Valid – 1.3 –

tsewi SEL_EXT_REG_WT Invalid 1.3 – –

tserv SEL_EXT_REG_RD Valid – 1.3 –

tseri SEL_EXT_REG_RD Invalid 1.3 – –

tedv External Data Valid – 8.6 –

tedi External Data Invalid 0 – –

texs EXT_IN[15:0] Setup 14 – Required by core.

texh EXT_IN[15:0] Hold 2 – Required by core.

tlexv LD_EXT_REG Valid – 1.5 –

tlexi LD_EXT_REG Invalid 1.4 – –

trexv RD_EXT_REG Valid – 1.4 –

trexi RD_EXT_REG Invalid 1.4 – –
10-10 Specifications

Appendix A
CWDSP1650 Register
Summary
This appendix contains a quick description of all the CWDSP1650
registers. Table A.1 lists the CWDSP1650 registers, any abbreviations
used in this manual, and a page number for the description of each.

Table A.1 CWDSP1650 Registers

Functional Block Register Name Abbreviations
Reference

Page

CBU Registers Ax Accumulators (AxE, AxH, or AxL) 4-3

Bx Accumulators (BxE, BxH, or BxL) 4-5

X Register – 4-6

Y Register – 4-6

P Register – 4-6

Interrupt Context Swithing Registers – 4-7

Shift Value Register SV 4-9

DAAU Registers Address Registers 0-5 R0-R5 4-10

Configuration Registers CFGI, CFGJ 4-11

Base Register RB 4-11

Stack Pointer Register SP 4-12

Alternative Bank Registers R0B, R1B, R4B, CFGIB 4-12

Min/Max Pointer Latching Register MIXP 4-13

(Sheet 1 of 2)
A-1

PCU Registers Data Value Match Register DVM 4-14

Internal Configuration Register ICR 4-14

Program Counter PC 4-15

Loop Counter LC 4-15

Status Registers Status Register 0 ST0 4-16

Status Register 1 ST1 4-18

Status Register 2 ST2 4-19

CCU Register CCU Register – 6-19

OCEM Registers Status 0 Register – 8-4

Status 1 Register – 8-6

Mode Register – 8-7

Data Address Breakpoint – 8-9

Data Address Mask – 8-9

Program Address Breakpoint Counter 3 – 8-10

Program Address Breakpoint Counter 2 – 8-10

Program Address Breakpoint Counter 1 – 8-10

Program Address Breakpoint 3 – 8-10

Program Address Breakpoint 2 – 8-10

Program Address Breakpoint 1 – 8-10

Program Flow Trace Register – 8-10

ScanICE Register Scan Control Register – 9-7

Table A.1 CWDSP1650 Registers (Cont.)

Functional Block Register Name Abbreviations
Reference

Page

(Sheet 2 of 2)
A-2 CWDSP1650 Register Summary

Customer Feedback
We would appreciate your feedback on this document. Please copy the
following page, add your comments, and fax it to us at the number
shown.

If appropriate, please also fax copies of any marked-up pages from this
document.

Important: Please include your name, phone number, fax number, and
company address so that we may contact you directly for
clarification or additional information.

Thank you for your help in improving the quality of our documents.

Reader’s Comments

Fax your comments to: LSI Logic Corporation
Technical Publications
M/S E-198
Fax: 408.433.4333

Please tell us how you rate this document: CWDSP1650 DSP Core
Technical Manual. Place a check mark in the appropriate blank for each
category.

What could we do to improve this document?

If you found errors in this document, please specify the error and page
number. If appropriate, please fax a marked-up copy of the page(s).

Please complete the information below so that we may contact you
directly for clarification or additional information.

Excellent Good Average Fair Poor

Completeness of information ____ ____ ____ ____ ____
Clarity of information ____ ____ ____ ____ ____
Ease of finding information ____ ____ ____ ____ ____
Technical content ____ ____ ____ ____ ____
Usefulness of examples and
illustrations

____ ____ ____ ____ ____

Overall manual ____ ____ ____ ____ ____

Name Date

Telephone

Title

Company Name

Street

City, State, Zip

Department Mail Stop

Fax
Customer Feedback

U.S. Distributors
by State
H. H. Hamilton Hallmark
W. E. Wyle Electronics

Alabama
Huntsville
H. H. Tel: 205.837.8700
W. E. Tel: 800.964.9953

Alaska
Anchorage
H. H. Tel: 800.332.8638
W. E. Tel: 907.257.8016

Arizona
Phoenix
H. H. Tel: 602.736.7000
W. E. Tel: 800.528.4040
Tucson
H. H. Tel: 520.742.0515

Arkansas
H. H. Tel: 800.327.9989

California
Irvine
H. H. Tel: 714.789.4100
W. E. Tel: 800.626.9953
Los Angeles
H. H. Tel: 818.594.0404
W. E. Tel: 800.288.9953
Sacramento
H. H. Tel: 916.632.4500
W. E. Tel: 800.627.9953
San Diego
H. H. Tel: 619.571.7540
W. E. Tel: 800.829.9953
San Jose
H. H. Tel: 408.435.3500
Santa Clara
W. E. Tel: 800.866.9953
Woodland Hills
H. H. Tel: 818.594.0404

Colorado
Denver
H. H. Tel: 303.790.1662
W. E. Tel: 800.933.9953

Connecticut
Cheshire
H. H. Tel: 203.271.5700
Wallingford
W. E. Tel: 800.605.9953

Delaware
North/South
H. H. Tel: 800.526.4812

Tel: 800.638.5988

Florida
Fort Lauderdale
H. H. Tel: 305.484.5482
W. E. Tel: 800.568.9953
Orlando
H. H. Tel: 407.657.3300
W. E. Tel: 407.740.7450
N. Florida
W. E. Tel: 800.395.9953
St. Petersburg
H. H. Tel: 813.507.5000

Georgia
Atlanta
H. H. Tel: 770.623.4400
W. E. Tel: 800.876.9953

Hawaii
H. H. Tel: 800.851.2282

Idaho
H. H. Tel: 801.266.2022

Illinois
North/South
H. H. Tel: 847.797.7300

Tel: 314.291.5350
Chicago
W. E. Tel: 800.853.9953

Indiana
Indianapolis
H. H. Tel: 317.575.3500
W. E. Tel: 317.581.6152

Iowa
Cedar Rapids
H. H. Tel: 319.393.0033

Kansas
Kansas City
H. H. Tel: 913.663.7900

Kentucky
Central/Northern/ Western
H. H. Tel: 800.984.9503

Tel: 800.767.0329
Tel: 800.829.0146

Louisiana
North/South
H. H. Tel: 800.231.0253

Tel: 800.231.5575

Maine
H. H. Tel: 800.272.9255

Maryland
Baltimore
H. H. Tel: 410.720.3400
W. E. Tel: 800.863.9953

Massachusetts
Boston
H. H. Tel: 508.532.9808
W. E. Tel: 800.444.9953
Marlborough
W. E. Tel: 508.480.9900

Michigan
Detroit
H. H. Tel: 313.416.5800
Grandville
H. H. Tel: 616.531.0345
Minnesota
Minneapolis
H. H. Tel: 612.881.2600
W. E. Tel: 800.860.9953

Mississippi
H. H. Tel: 800.633.2918

Missouri
St. Louis
H. H. Tel: 314.291.5350

Montana
H. H. Tel: 800.526.1741

Nebraska
H. H. Tel: 800.332.4375

Nevada
Las Vegas
H. H. Tel: 800.528.8471
W. E. Tel: 702.765.4040

New Hampshire
H. H. Tel: 800.272.7117

New Jersey
North/South
H. H. Tel: 201.515.1641

Tel: 609.222.6400
Pine Brook
W. E. Tel: 800.862.9953

New Mexico
Albuquerque
H. H. Tel: 505.293.5119

New York
Long Island
H. H. Tel: 516.434.7400
W. E. Tel: 800.861.9953
Rochester
H. H. Tel: 716.475.9130
W. E. Tel: 800.319.9953
Syracuse
H. H. Tel: 315.453.4000

North Carolina
Raleigh
H. H. Tel: 919.872.0712
W. E. Tel: 800.560.9953

North Dakota
H. H. Tel: 800.829.0116

Ohio
Cleveland
H. H. Tel: 216.498.1100
W. E. Tel: 800.763.9953
Dayton
H. H. Tel: 614.888.3313
W. E. Tel: 800.763.9953

Oklahoma
Tulsa
H. H. Tel: 918.459.6000
Oregon
Portland
H. H. Tel: 503.526.6200
W. E. Tel: 800.879.9953

Pennsylvania
Pittsburgh
H. H. Tel: 412.281.4150
Philadelphia
H. H. Tel: 800.526.4812
W. E. Tel: 800.871.9953

Rhode Island
H. H. 800.272.9255

South Carolina
H. H. Tel: 919.872.0712

South Dakota
H. H. Tel: 800.829.0116

Tennessee
East/West
H. H. Tel: 800.241.8182

Tel: 800.633.2918

Texas
Austin
H. H. Tel: 512.219.3700
W. E. Tel: 800.365.9953
Dallas
H. H. Tel: 214.553.4300
W. E. Tel: 800.955.9953
El Paso
H. H. Tel: 800.526.9238
Houston
H. H. Tel: 713.781.6100
W. E. Tel: 800.888.9953
Rio Grande Valley
H. H. Tel: 210.412.2047

Utah
Draper
W. E. Tel: 800.414.4144
Salt Lake City
H. H. Tel: 801.365.3800
W. E. Tel: 800.477.9953

Vermont
H. H. Tel: 800.272.9255

Virginia
H. H. Tel: 800.638.5988

Washington
Seattle
H. H. Tel: 206.882.7000
W. E. Tel: 800.248.9953

Wisconsin
Milwaukee
H. H. Tel: 414.513.1500
W. E. Tel: 800.867.9953

Wyoming
H. H. Tel: 800.332.9326

Sales Offices and Design
Resource Centers
LSI Logic Corporation
Corporate Headquarters
Tel: 408.433.8000
Fax: 408.433.8989

NORTH AMERICA

California
Irvine

♦Tel: 714.553.5600
Fax: 714.474.8101

San Diego
Tel: 619.613.8300
Fax: 619.613.8350

Silicon Valley
Sales Office
Tel: 408.433.8000
Fax: 408.954.3353
Design Center

♦Tel: 408.433.8000
Fax: 408.433.7695

Colorado
Boulder
Tel: 303.447.3800
Fax: 303.541.0641

Florida
Boca Raton
Tel: 561.989.3236
Fax: 561.989.3237

Illinois
Schaumburg

♦Tel: 847.995.1600
Fax: 847.995.1622

Kentucky
Bowling Green
Tel: 502.793.0010
Fax: 502.793.0040

Maryland
Bethesda
Tel: 301.897.5800
Fax: 301.897.8389

Massachusetts
Waltham

♦Tel: 617.890.0180
Fax: 617.890.6158

Minnesota
Minneapolis

♦Tel: 612.921.8300
Fax: 612.921.8399

New Jersey
Edison

♦Tel: 732.549.4500
Fax: 732.549.4802

♦

♦

♦

♦

♦

New York
New York
Tel: 716.223.8820
Fax: 716.223.8822

North Carolina
Raleigh
Tel: 919.783.8833
Fax: 919.783.8909

Oregon
Beaverton
Tel: 503.645.0589
Fax: 503.645.6612

Texas
Austin
Tel: 512.388.7294
Fax: 512.388.4171

Dallas
Tel: 972.788.2966
Fax: 972.233.9234

Houston
Tel: 281.379.7800
Fax: 281.379.7818

Washington
Issaquah
Tel: 425.837.1733
Fax: 425.837.1734

Canada
Ontario
Ottawa
Tel: 613.592.1263
Fax: 613.592.3253

Toronto
Tel: 416.620.7400
Fax: 416.620.5005

Quebec
Montreal
Tel: 514.694.2417
Fax: 514.694.2699

INTERNATIONAL

Australia
Reptechnic Pty Ltd
New South Wales
Tel: 612.9953.9844
Fax: 612.9953.9683

Denmark
LSI Logic Development
Centre
Ballerup
Tel: 45.44.86.55.55
Fax: 45.44.86.55.56

♦

♦

♦

♦

♦

♦

♦

♦

♦

France
LSI Logic S.A.
Immeuble Europa
Paris
Tel: 33.1.34.63.13.13
Fax: 33.1.34.63.13.19

Germany
LSI Logic GmbH
Munich
Tel: 49.89.4.58.33.0
Fax: 49.89.4.58.33.108

Stuttgart
Tel: 49.711.13.96.90
Fax: 49.711.86.61.428

Hong Kong
AVT Industrial Ltd
Hong Kong
Tel: 852.2428.0008
Fax: 852.2401.2105

India
LogiCAD India Private Ltd
Bangalore
Tel: 91.80.526.2500
Fax: 91.80.338.6591

Israel
LSI Logic
Ramat Hasharon
Tel: 972.3.5.403741
Fax: 972.3.5.403747

Netanya
Tel: 972.9.657190
Fax: 972.9.657194

Italy
LSI Logic S.P.A.
Milano
Tel: 39.39.687371
Fax: 39.39.6057867

Japan
LSI Logic K.K.
Tokyo
Tel: 81.3.5463.7821
Fax: 81.3.5463.7820

Osaka
Tel: 81.6.947.5281
Fax: 81.6.947.5287

Korea
LSI Logic Corporation of
Korea Ltd.
Seoul
Tel: 82.2.528.3400
Fax: 82.2.528.2250

♦

♦

♦

♦

♦

♦

Singapore
LSI Logic Pte Ltd
Singapore
Tel: 65.334.9061
Fax: 65.334.4749

Spain
LSI Logic S.A.
Madrid
Tel: 34.1.556.07.09
Fax: 34.1.556.75.65

Sweden
LSI Logic AB
Stockholm
Tel: 46.8.444.15.00
Fax: 46.8.750.66.47

Switzerland
LSI Logic Sulzer AG
Brugg/Biel
Tel: 41.32.536363
Fax: 41.32.536367

Taiwan
LSI Logic Asia-Pacific
Taipei
Tel: 886.2.718.7828
Fax: 886.2.718.8869

Cheng Fong Technology
Corporation
Tel: 886.2.910.1180
Fax: 886.2.910.1175

Jeilin Technology
Corporation, Ltd.
Tel: 886.2.248.4828
Fax: 886.2.242.4397

Lumax International
Corporation, Ltd
Tel: 886.2.788.3656
Fax: 886.2.788.3568

Macro-Vision
Technology Inc.
Tel: 886.2.698.3350
Fax: 886.2.698.3348

United Kingdom
LSI Logic Europe Ltd
Bracknell
Tel: 44.1344.426544
Fax: 44.1344.481039

Sales Offices with
Design Resource Centers

