

Property of Lite-On Only

Technical Data Super Flux LEDs GaN

LTL911TBKS LTL912TBKS LTL911TGKS LTL912TGKS

Blue Green Green

Blue

Benefits

- Fewer LEDs required due to GaN technology
- Lower lighting system cost
- Higher luminous efficiency than incandescent

Feature

- High current operation / High flux output
- Low thermal resistance / Low profile
- Wide viewing angle
- Tube package for automatic loading and insertion process

Application

- Signal board
- **Exterior Lighting**

Description

These parts are designed for high current operation and high flux output applications. In order to solve the high temperature produced by the higher current operation, the package's design features better thermal management characteristics than other LED solutions coupled with an efficient optical design.

This package design allows the lighting designer to reduce the number of LEDs required as well as the overall lighting system cost. The low profile package can be easily coupled to reflectors or lenses to efficiently distribute light and provide the desired illuminated appearance. This product family employs the world's brightest blue and green LED materials, which allow designers to match the color of popular lighting applications, such as signal board, exterior lighting, and traffic lighting.

Part No. : LTL91xTxKS

Property of Lite-On Only

BNS-OD-C131/A4

Property of Lite-On Only

Parameter	Blue	Green	Unit mW				
Power Dissipation	190	190					
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	100	100	mA				
Continuous Forward Current	50	50	mA				
Derating Linear From 45°C	0.91	0.91	mA/°C				
Reverse Voltage (I _R =100 μ A)	5	5	V				
Operating Temperature Range	-40° C to $+ 100^{\circ}$ C						
Storage Temperature Range	-55°C to + 100°C						
LED Junction Temperature	125°C						
Soldering Preheat Temperature	100°C for 30 Seconds						
Lead Soldering Temperature	260°C for 5 Seconds [1.5mm (.06") From Seating Plane]						

Notes:

1. Operation at currents below 10mA is not recommended.

2. Derating linear as shown in Fig. 3

Page: 3 of 5

Property of Lite-On Only

Parameter	Symbol	Part No. LTL*	Min.	Тур.	Max.	Unit	Test Condition
Total Flux	ØV	LTL91xTBKS LTL91xTGKS		450 1000		mlm	IF = 50mA Note 1
Luminous Intensity / Total Flux	Iv / ØV	LTL911TxKS LTL912TxKS		0.8 1.2		mcd /mlm	
Viewing Angle	2 0 1/2	LTL911TxKS LTL912TxKS		75 60		deg	Note 2 (Fig.5)
Peak Emission Wavelength	λΡ	LTL91xTBKS LTL91xTGKS		465 518		nm	Measurement @Peak (Fig.1)
Dominant Wavelength	λd	LTL91xTBKS LTL91xTGKS		470 525		nm	Note 3
Spectral Line Half-Width	Δλ	LTL91xTBKS LTL91xTGKS		25 35			
Forward Voltage	VF	LTL91xTBKS LTL91xTGKS		3.6	4.2	v	IF = 50mA
Reverse Voltage	VR		5	10		v	$IR = 100 \mu A$
				1		1	L

Note: 1. ØV is the total luminous flux output as measured with an integrating sphere.

- 2. θ 1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength, λ d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Property of Lite-On Only

BNS-OD-C131/A4