Ordering number : ENA1477

ON Semiconductor DATA SHEET

N-Channel Silicon MOSFET

EFC4612R — General-Purpose Switching Device Applications

Features

- 2.5V drive.
- · Built-in gate protection resistor.
- · Best suited for LiB charging and discharging switch.
- · Common-drain type.

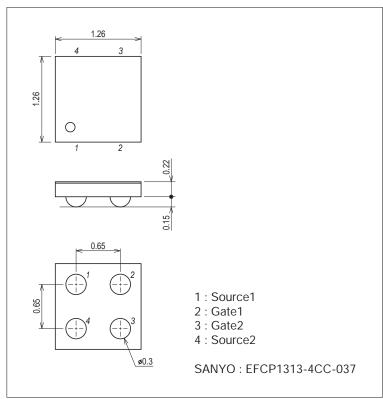
Specifications

Absolute Maximum Ratings at Ta=25°C

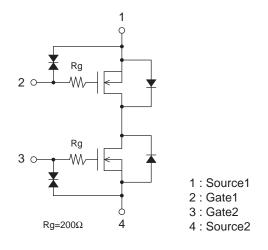
Parameter	Symbol	Conditions	Ratings	Unit
Source-to-Source Voltage	VSSS		24	V
Gate-to-Source Voltage	V _{GSS}		±12	V
Source Current (DC)	IS		6	Α
Source Current (Pulse)	ISP	PW≤10μs, duty cycle≤1%	60	А
Total Dissipation	PT	When mounted on ceramic substrate (5000mm ² ×0.8mm)	1.6	W
Channel Temperature	Tch		150	°C
Storage Temperature	Tstg		-55 to +150	°C

Electrical Characteristics at Ta=25°C

Parameter	Symbol	Conditions		Ratings			Unit
				min	typ	max	Unit
Source-to-Source Breakdown Voltage	V(BR)SSS	I _S =1mA, V _{GS} =0V	Test Circuit 1	24			V
Zero-Gate Voltage Source Current	ISSS	Vss=20V, Vgs=0V	Test Circuit 1			1	μΑ
Gate-to-Source Leakage Current	IGSS	VGS=±8V, VSS=0V	Test Circuit 2			±10	μΑ
Cutoff Voltage	VGS(off)	VSS=10V, IS=1mA	Test Circuit 3	0.5		1.3	V
Forward Transfer Admittance	yfs	Vss=10V, Is=3A	Test Circuit 4		3.1		S

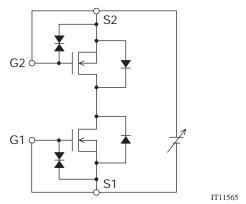

Marking: FN Continued on next page.

Continued from preceding page.

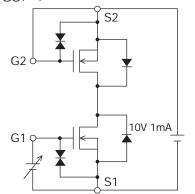

Parameter	Cumbal	Conditions		Ratings			Linit
	Symbol Condition			min	typ	max	Unit
Static Source-to-Source On-State Resistance	R _{SS} (on)1	I _S =3A, V _{GS} =4.5V	Test Circuit 5	24	39	45	mΩ
	RSS(on)2	IS=3A, VGS=4.0V	Test Circuit 5	25	41	48	mΩ
	RSS(on)3	IS=3A, VGS=3.7V	Test Circuit 5	27.5	43	50	mΩ
	R _{SS} (on)4	I _S =3A, V _{GS} =3.1V	Test Circuit 5	31.5	48	57	mΩ
	RSS(on)5	I _S =3A, V _{GS} =2.5V	Test Circuit 5	33.5	58	72	mΩ
Turn-ON Delay Time	t _d (on)	See specified Test Circuit.	Test Circuit 7		20		ns
Rise Time	tr	See specified Test Circuit.	Test Circuit 7		230		ns
Turn-OFF Delay Time	t _d (off)	See specified Test Circuit.	Test Circuit 7		130		ns
Fall Time	tf	See specified Test Circuit.	Test Circuit 7		210		ns
Total Gate Charge	Qg	V _S S=10V, V _G S=4.5V, I _S =6A			7		nC
Forward Source-to-Source Voltage	VF(S-S)	IS=3A, VGS=0V	Test Circuit 6		0.8	1.2	V

Package Dimensions

unit : mm (typ) 7064-001

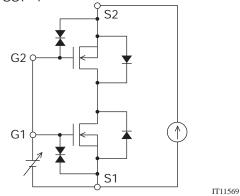

Electrical Connection

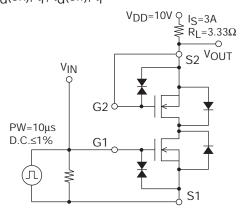
Test circuits are example of measuring FET1 side


Test Circuit 1

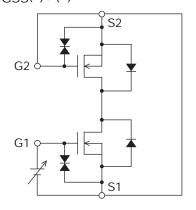
VSSS / ISSS

Test Circuit 3


V_GS(off)

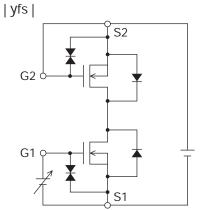

IT11567

Test Circuit 5

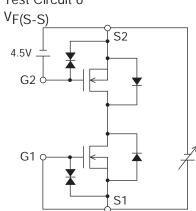

Rss(on)

Test Circuit 7 $t_d(on)$, t_r , $t_d(off)$, t_f

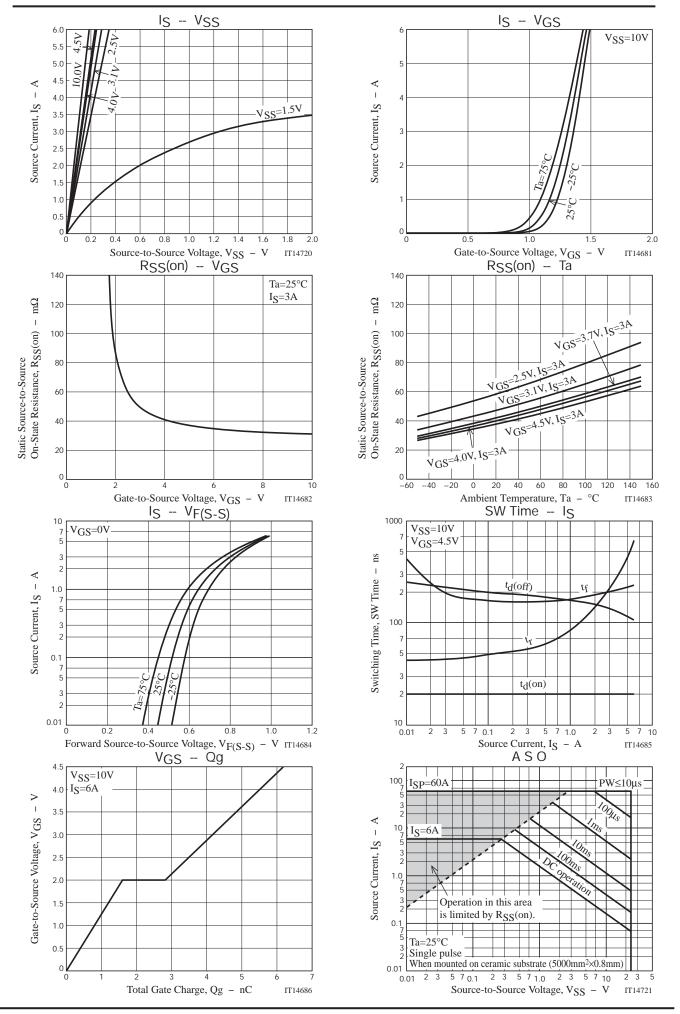
Test Circuit 2 IGSS(+) / (--)

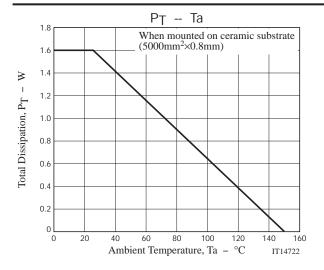


IT11566


IT11568

IT11570


Test Circuit 4



Test Circuit 6

* Note: Connect the mesurement terminal reversely if you want to measure the FET2 side.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. SCILLC strives to supply high-quality high-reliability products and recommends adopting safety measures when designing equipment to avoid accidents or malfunctions. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals," must be validated for each customer application by customer's technical experts. SCILLC shall not be held liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damag

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada.

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 **Japan Customer Focus Center** Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative