

Advance Product Information

37-41 GHz 0.4W MMIC PA

TGA1073C

Prototype Part #, Production Part # TBD

The TriQuint TGA1073C-EPU is a two-stage HPA MMIC design using TriQuint's proven 0.25 um Power pHEMT process. The TGA1073C is designed to support a variety of millimeter wave applications including point-to-point digital radio and LMDS and other point-to-multipoint communications.

The three stage design consists of a 2 x 400um input stage driving a 4 x 400um output stage.

The TGA1073C provides 26 dBm nominal output power at 1dB compression across 36-41GHz. Typical small signal gain is 16 dB

The TGA1073C requires minimum off-chip components. Each device is 100% DC and RF tested on-wafer to ensure performance compliance. The device is available in chip form.

Key Features and Performance

- 0.25um pHEMT Technology
- 16 dB Nominal Gain
- 26 dBm Nominal Pout @ P1dB
- -34 dBc IMR3 @ 16 dBm SCL
- Bias 5 -7V @ 240 mA
- Chip Dimensions 2.40 mm x 1.45 mm

Primary Applications

- Point-to-Point Radio
- Point-to-Multipoint Communications

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice

TriQuint (semiCONDUCTOR.

Advance Product Information

Mechanical Characteristics

Units: millimeters (inches) Thickness: 0.1016 (0.004)

Chip edge to bond pad dimensions are shown to center of bond pad Chip size tolerance: +/- 0.051 (0.002)

Bond Pad #1 (RF Input)	0.105 × 0.135 (0.004 × 0.005)
Bond Pad #2 (GND)	$0.080 \times 0.135 (0.003 \times 0.005)$
Bond Pad #3 (VG)	$0.105 \times 0.105 (0.004 \times 0.004)$
Bond Pad #4 (VG)	0.105 × 0.105 (0.004 × 0.004)
Bond Pad #5 (VD)	$0.105 \times 0.105 (0.004 \times 0.004)$
Bond Pad #6 (GND)	$0.105 \times 0.105 (0.004 \times 0.004)$
Bond Pad #7 (GND)	$0.105 \times 0.105 (0.004 \times 0.004)$
Bond Pad #8 (RF Dutput)	0.105 × 0.135 (0.004 × 0.005)
Bond Pad #9 (GND)	0.105 × 0.205 (0.004 × 0.008)
Bond Pad #10 (VD)	$0.105 \times 0.105 (0.004 \times 0.004)$
Bond Pad #11 (VG)	0.105 × 0.105 (0.004 × 0.004)
Bond Pad #12 (VD)	0.105 × 0.105 (0.004 × 0.004)

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

Advance Product Information

Chip Assembly and Bonding Diagram

Reflow process assembly notes:

- AuSn (80/20) solder with limited exposure to temperatures at or above 300 C
- alloy station or conveyor furnace with reducing atmosphere
- no fluxes should be utilized
- coefficient of thermal expansion matching is critical for long-term reliability
- storage in dry nitrogen atmosphere

Component placement and adhesive attachment assembly notes:

- vacuum pencils and/or vacuum collets preferred method of pick up
- avoidance of air bridges during placement
- force impact critical during auto placement
- organic attachment can be used in low-power applications
- curing should be done in a convection oven; proper exhaust is a safety concern
- microwave or radiant curing should not be used because of differential heating
- coefficient of thermal expansion matching is critical

Interconnect process assembly notes:

- thermosonic ball bonding is the preferred interconnect technique
- force, time, and ultrasonics are critical parameters
- aluminum wire should not be used
- discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire
- maximum stage temperature: 200 C

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.