# LOW VOLTAGE 0.5 M MAX DUAL SPDT SWITCH, SINGLE ENABLE WITH BREAK BEFORE MAKE FEATURE 

PRELIMINARY DATA

- HIGH SPEED:
$\mathrm{t}_{\text {PD }}=0.3 \mathrm{~ns}$ (TYP.) at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PD}}=0.4 \mathrm{~ns}$ (TYP.) at $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$
- ULTRA LOW POWER DISSIPATION:
$\mathrm{I}_{\mathrm{CC}}=0.2 \mu \mathrm{~A}$ (MAX.) at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
- LOW "ON" RESISTANCE $\mathrm{V}_{1}=0 \mathrm{~V}$ :
$\mathrm{R}_{\mathrm{ON}}=0.4 \Omega$ (MAX. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ) at $\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$
$\mathrm{R}_{\mathrm{ON}}=0.5 \Omega\left(\mathrm{MAX} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
$\mathrm{R}_{\mathrm{ON}}=0.6 \Omega\left(\mathrm{MAX} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ ) at $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$
- WIDE OPERATING VOLTAGE RANGE:
$\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=1.4 \mathrm{~V}$ to 4.3 V SINGLE SUPPLY
- 4.3V TOLERANT AND 1.8 V COMPATIBLE THRESHOLD ON DIGITAL CONTROL INPUT at $\mathrm{V}_{\mathrm{CC}}=2.3$ to 4.3 V
- LATCH-UP PERFORMANCE EXCEEDS 300mA (JESD 17)
- ESD PERFORM. (ANALOG CHAN. vs GND): HBM $>4 \mathrm{KV}$ (MIL STD 883 method 3015)


## DESCRIPTION

The STG3685 is an high-speed CMOS DUAL ANALOG S.P.D.T. (Single Pole Dual Throw) SWITCH or DUAL 2:1 Multiplexer/Demultiplexer Bus Switch fabricated in silicon gate $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is designed to operate from 1.4 V to 4.3 V , making this device ideal for portable applications.
It offers very low ON-Resistance $(<0.5 \Omega)$ at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$. The IN input is provided to control the switches. The switches nS1 are ON (they are


Table 1: Order Codes

| PACKAGE | T \& R |
| :---: | :---: |
| Flip-Chip9 | STG3685BJR |

connected to common Ports Dn) when the IN input is held high and OFF (high impedance state exists between the two ports) when IN is held low; the switches nS2 are ON (they are connected to common Ports Dn) when the IN input is held low and OFF (high impedance state exists between the two ports) when IN is held high. Additional key features are fast switching speed, Break Before Make Delay Time and Ultra Low Power Consumption. All inputs and outputs are equipped with protection circuits against static discharge, giving them ESD immunity and transient excess voltage. It's available in the commercial temperature range Flip-chip package with Epoxy Protection.

Figure 1: Pin Connection (Top Through View) And Schematic Circuit
Suls

Figure 2: Input Equivalent Circuit


Table 2: Pin Description

| PIN N | SYMBOL | NAME AND <br> FUNCTION |
| :---: | :---: | :--- |
| B2 | IN | Control |
| A3, A1 | 2S1, 1S1 | Independent Chan- <br> nels |
| B3, C1 12 B1 | D2, D1 | Common Channels |
| C2 | GND | Ground (0V) |
| A2 | V $_{\text {CC }}$ | Positive Supply <br> Voltage |

Table 3: Truth Table

| IN | SWITCH S1 | SWITCH S2 |
| :---: | :---: | :---: |
| H | ON | OFF $\left({ }^{*}\right)$ |
| L | OFF(*) | ON |

(*) High Impedance

Table 4: Absolute Maximum Ratings

| Symbol | Parameter | Value | Unit |
| :---: | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | -0.5 to 4.6 | V |
| $\mathrm{~V}_{\mathrm{I}}$ | DC Input Voltage | -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$ | V |
| $\mathrm{~V}_{\mathrm{IC}}$ | DC Control Input Voltage | -0.5 to 4.6 | V |
| $\mathrm{~V}_{\mathrm{O}}$ | DC Output Voltage | -0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$ | V |
| $\mathrm{I}_{\mathrm{IKC}}$ | DC Input Diode Current on control pin $\left(\mathrm{V}_{\text {IN }}<0 \mathrm{~V}\right)$ | -50 | mA |
| $\mathrm{I}_{\mathrm{IK}}$ | DC Input Diode Current $\left(\mathrm{V}_{\text {IN }}<0 \mathrm{~V}\right)$ | $\pm 50$ | mA |
| $\mathrm{I}_{\mathrm{OK}}$ | DC Output Diode Current | $\pm 20$ | mA |
| $\mathrm{I}_{\mathrm{O}}$ | DC Output Current | $\pm 300$ | mA |
| $\mathrm{I}_{\mathrm{OP}}$ | DC Output Current Peak (pulse at 1ms, $10 \%$ duty cycle $)$ | $\pm 500$ | mA |
| $\mathrm{I}_{\mathrm{CC}}$ or $\mathrm{I}_{\mathrm{GND}}$ | DC $\mathrm{V}_{\mathrm{CC}}$ or Ground Current | $\pm 100$ | mA |
| $\mathrm{P}_{\mathrm{D}}$ | Power Dissipation at $\mathrm{T}_{\mathrm{a}}=70^{\circ} \mathrm{C}(1)$ | TBD | mW |
| $\mathrm{T}_{\text {stg }}$ | Storage Temperature | -65 to 150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{L}}$ | Lead Temperature $(10 \mathrm{sec})$ | 260 | ${ }^{\circ} \mathrm{C}$ |

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.
(1) Derate above $70^{\circ} \mathrm{C}$ : by $18.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Table 5: Recommended Operating Conditions

| Symbol | Parameter | Value | Unit |
| :---: | :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage (note 1) | 0.4 to 4.3 | V |
| $\mathrm{~V}_{\mathrm{I}}$ | Input Voltage | 0 to $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{\mathrm{IC}}$ | Control Input Voltage | 0 to 4.3 | V |
| $\mathrm{~V}_{\mathrm{O}}$ | Output Voltage | 0 to $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{T}_{\mathrm{op}}$ | Operating Temperature | -55 to 125 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{dt} / \mathrm{dv}$ | Input Rise and Fall Time Control Input | $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 2.7 V | 0 to 20 |
|  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 0 to 10 |

1) Truth Table guaranteed: 1.2 V to 4.3 V .

Table 6: DC Specifications

| Symbol | Parameter | Test Conditions |  | Value |  |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$ |  | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | -40 to $85^{\circ} \mathrm{C}$ |  | -55 to $125^{\circ} \mathrm{C}$ |  |  |
|  |  |  |  | Min. | Typ. | Max. | Min. | Max. | Min. | Max. |  |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 1.65-1.95 |  | $0.65 \mathrm{~V}_{\mathrm{CC}}$ |  |  | $0.65 \mathrm{~V}_{\text {CC }}$ |  | $0.65 \mathrm{~V}_{\mathrm{CC}}$ |  | V |
|  |  | 2.3-2.5 |  | 1.4 |  |  | 1.4 |  | 1.4 |  |  |
|  |  | 2.7-3.0 |  | 1.4 |  |  | 1.4 |  | 1.4 |  |  |
|  |  | 3.3 |  | 1.5 |  |  | 1.5 |  | 1.5 |  |  |
|  |  | 3.6 |  | 1.6 |  |  | 1.6 |  | 1.6 |  |  |
|  |  | 4.3 |  | 1.6 |  |  | 1.6 |  | 1.6 |  |  |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage | 1.65-1.95 |  |  |  | 0.40 |  | 0.40 |  | 0.40 | V |
|  |  | 2.3-2.5 |  |  |  | 0.50 |  | 0.50 |  | 0.50 |  |
|  |  | 2.7-3.6 |  |  |  | 0.50 |  | 0.50 |  | 0.50 |  |
|  |  | 3.3 |  |  |  | 0.50 |  | 0.50 |  | 0.50 |  |
|  |  | 3.6 |  |  |  | 0.50 |  | 0.50 |  | 0.50 |  |
|  |  | 4.3 |  |  |  | 0.50 |  | 0.50 |  | 0.50 |  |
| $\mathrm{R}_{\mathrm{ON}}$ | Switch ON Resistance (See Fig. 12) | 4.3 | $\begin{gathered} \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{gathered}$ |  | 250 | 400 |  | 500 |  |  | $\mathrm{m} \Omega$ |
|  |  | 3.0 |  |  | 300 | 500 |  | 600 |  |  |  |
|  |  | 2.7 |  |  | 300 | 500 |  | 600 |  |  |  |
|  |  | 2.3 |  |  | 350 | 600 |  | 800 |  |  |  |
|  |  | 1.8 |  |  | 550 | 2000 |  | 4000 |  |  |  |
|  |  | 1.4 |  |  | 1200 | 2500 |  | 5000 |  |  |  |
| $\mathrm{R}_{\text {FLAT }}$ | ON <br> Resistance FLATNESS <br> (1) | 4.3 | $\begin{gathered} \mathrm{V}_{\mathrm{S}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \\ \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{gathered}$ |  |  |  |  |  |  |  | $\Omega$ |
|  |  | 3.0 |  |  |  |  |  |  |  |  |  |
|  |  | 2.7 |  |  | 0.07 | 0.15 |  | 0.15 |  |  |  |
|  |  | 2.3 |  |  |  |  |  |  |  |  |  |
|  |  | 1.65 |  |  |  |  |  |  |  |  |  |
| ${ }^{\text {I FFF }}$ | OFF State Leakage Current (nSn), (Dn) | 4.3 | $\mathrm{V}_{\mathrm{S}}=0.3$ or 4 V |  |  | $\pm 10$ |  | $\pm 100$ |  |  | nA |
| $\mathrm{I}_{\mathrm{N}}$ | Input Leakage Current | 0-4.3 | $\mathrm{V}_{1 \mathrm{~N}}=0$ to 4.3 V |  |  | $\pm 0.1$ |  | $\pm 1$ |  |  | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{CCL}}$ | Quiescent <br> Supply <br> Current | 1.65-4.3 | $\begin{gathered} \mathrm{V}_{\mathbb{I N}^{\prime}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ \text { GND } \end{gathered}$ |  |  | $\pm 0.05$ |  | $\pm 0.2$ |  | $\pm 1$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{CCH}}$ | Quiescent Supply Current | 4.2 | $\mathrm{V}_{1 \mathrm{~N}}=1.65 \mathrm{~V}$ |  | 415 | 500 |  |  |  |  | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$ |  | 360 | 400 |  |  |  |  |  |
|  |  |  | $\mathrm{V}_{1 \mathrm{~N}}=2.6 \mathrm{~V}$ |  | 120 | 150 |  |  |  |  |  |

Note 1: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

Table 7: AC Electrical Characteristics ( $\left.C_{L}=35 \mathrm{pF}, R_{L}=50 \Omega, t_{r}=t_{f} \leq 5 n s\right)$

| Symbol | Parameter | Test Condition |  | Value |  |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $V_{C C}$ <br> (V) |  | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | -40 to $85^{\circ} \mathrm{C}$ |  | -55 to $125^{\circ} \mathrm{C}$ |  |  |
|  |  |  |  | Min. | Typ. | Max. | Min. | Max. | Min. | Max. |  |
| $\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$ | Propagation Delay | 1.65-1.95 |  |  | 0.45 |  |  |  |  |  | ns |
|  |  | 2.3-2.7 |  |  | 0.40 |  |  |  |  |  |  |
|  |  | 3.0-3.6 |  |  | 0.30 |  |  |  |  |  |  |
|  |  | 3.6-4.3 |  |  | 0.30 |  |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{ON}}$ | TURN-ON time | 1.65-1.95 | $\mathrm{V}_{\mathrm{S}}=0.8 \mathrm{~V}$ |  | 70 |  |  |  |  |  | ns |
|  |  | 2.3-2.7 | $\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$ |  | 32 | 50 |  | 60 |  |  |  |
|  |  | 3.0-3.6 |  |  | 32 | 50 |  | 60 |  |  |  |
|  |  | 3.6-4.3 |  |  | 30 | 50 |  | 60 |  |  |  |
| toff | TURN-OFF time | 1.65-1.95 | $\mathrm{V}_{\mathrm{S}}=0.8 \mathrm{~V}$ |  | 45 |  |  |  |  |  | ns |
|  |  | 2.3-2.7 | $\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$ |  | 25 | 30 |  | 40 |  |  |  |
|  |  | 3.0-3.6 |  |  | 15 | 30 |  | 40 |  |  |  |
|  |  | 3.6-4.3 |  |  | 15 | 30 |  | 40 |  |  |  |
| $t_{D}$ | Break Before Make Time Delay | 1.65-1.95 | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \end{aligned}$ |  |  |  |  |  |  |  | ns |
|  |  | 2.3-2.7 |  | 2 | 15 |  |  |  |  |  |  |
|  |  | 3.0-3.6 |  | 2 | 15 |  |  |  |  |  |  |
|  |  | 3.6-4.3 |  | 2 | 15 |  |  |  |  |  |  |
| Q | Charge injection | 1.65-1.95 | $\begin{gathered} \hline \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{gathered}$ |  | 50 |  |  |  |  |  | pC |
|  |  | 2.3-2.7 |  |  | 40 |  |  |  |  |  |  |
|  |  | 3.0-3.6 |  |  | 35 |  |  |  |  |  |  |
|  |  | 3.6-4.3 |  |  | 35 |  |  |  |  |  |  |

Table 8: Analog Switch Characteristics $\left(C_{L}=5 p F, R_{L}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}\right)$

| Symbol | Parameter | Test Condition |  | Value |  |  |  |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$ |  | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | -40 to $85^{\circ} \mathrm{C}$ |  | -55 to $125^{\circ} \mathrm{C}$ |  |  |
|  |  |  |  | Min. | Typ. | Max. | Min. | Max. | Min. | Max. |  |
| OIRR | Off Isolation (1) | 1.65-4.3 | $\begin{aligned} & V_{S}=1 V_{R M S} \\ & f=100 K H z \end{aligned}$ |  | -64 |  |  |  |  |  | dB |
| Xtalk | Crosstalk | 1.65-4.3 | $\begin{aligned} & V_{S}=1 V_{\text {RMS }} \\ & f=100 \mathrm{KHz} \end{aligned}$ |  | -32 |  |  |  |  |  | dB |
| THD | Total Harmonic Distortion | 2.3-4.3 | $\begin{gathered} R_{L}=600 \Omega \\ V_{1}=2 V_{P P} \\ f=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{gathered}$ |  | 0.03 |  |  |  |  |  | \% |
| BW | -3dB Bandwidth | 1.65-4.3 | $\mathrm{R}_{\mathrm{L}}=50 \Omega$ |  | 50 |  |  |  |  |  | MHz |
| $\mathrm{C}_{\text {IN }}$ | Control Pin Input Capacitance |  |  |  | 10 |  |  |  |  |  |  |
| $\mathrm{C}_{\text {Sn }}$ | Sn Port Capacitance | 3.3 | $\mathrm{f}=1 \mathrm{MHz}$ |  | 35 |  |  |  |  |  | pF |
| $C_{\text {D }}$ | D Port Capacitance when Switch is Enabled | 3.3 | $f=1 \mathrm{MHz}$ |  | 91 |  |  |  |  |  |  |

[^0]Figure 3: On Resistance


Figure 4: Off Leakage


Figure 6: Bandwidth


Figure 7: Channel To Channel Crosstalk


Figure 5: Off Isolation


Figure 8: Test Circuit

$\mathrm{C}_{\mathrm{L}}=5 / 35 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{L}=50 \Omega$ or equivalent
$R_{\mathrm{T}}=\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically $50 \Omega$ )
Figure 9: Break Before Make Time Delay


Figure 10: Charge Injection $\left(V_{G E N}=0 V, R_{G E N}=0 \Omega, R_{L}=1 M \Omega, C_{L}=100 \mathrm{pF}\right)$


Figure 11: Turn On, Turn Off Delay Time


## TYPICAL CHARACTERISTICS

Figure 12: Switch-On R ON $^{\text {vs }} \mathrm{V}_{\mathrm{IN}}$


Flip-Chip9 MECHANICAL DATA

| DIM. | mm. |  |  | mils |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN. | TYP | MAX. | MIN. | TYP. | MAX. |
| A | 1.59 | 1.64 | 1.69 | 62.6 | 64.6 | 66.5 |
| B | 1.42 | 1.47 | 1.52 | 55.9 | 57.9 | 59.8 |
| C |  |  | 0.80 |  |  | 31.5 |
| D | 0.295 | 0.32 | 0.345 | 11.6 | 12.6 | 13.6 |
| E |  | 0.5 |  |  | 19.7 |  |
| F | 0.35 | 0.40 | 0.45 | 13.8 | 15.7 | 17.7 |
| G |  | 0.25 |  |  | 9.8 |  |
| H | 0.061 | 0.0635 | 0.066 | 2.4 | 2.5 | 2.6 |



Table 9: Revision History

| Date | Revision | Description of Changes |
| :---: | :---: | :--- |
| 13-Jan-2005 | 1 | First Release. |
| 04-Jul-2005 | 2 | The Q Values on Table 7 has been updated. |

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2005 STMicroelectronics - All Rights Reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com


[^0]:    Note 1: Off Isolation $=20 \log _{10}\left(\mathrm{~V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{S}}\right), \mathrm{V}_{\mathrm{D}}=$ output. $\mathrm{V}_{\mathrm{S}}=$ input at off switch.

