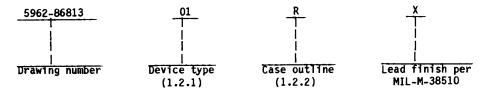
								Г							B	FV	ISI	ON	s								
								-	T D				DE	SCR						1	DA	TE		APP	RO	VΕ	D
					Z.			<u>۔</u> ب	TR	Add	ve	ndor	r CA		701			devi	ce	+		MAR 87	١,	Ke	us	ښ	7
																				•			•				
REV					<u></u>				[_																П		Į
PAGE	Щ	لِـ		<u> </u>	Ļ	╀	_	┝	┞-	╂	-				ᅱ	\vdash	Δ	\dashv	-		┢	Н		T	Н	┢	t
DEV STAT			EV AGE		A 1	2	3	4	5	6	7	8	9	10	11	12	13										1
OF PAGE					٦	PRE	PA	9	a.	Po	5				Th all	is o	iraw part	ing iment	s a s a	vaila nd /	able Ager	for	us€	e by		N	-
	nter	nics	i				() ()		• /	01	X	9	_	}								יייי	T A :		ITCH	cr	
OF PAGE: Defense El Supply Cel Dayton, Of Original da of drawing	nter nio nte					APP SIZ	RECE	U IVE	00	ON E		NT.	NO.		TI CM SI	TLE OS LIC	0CT/	CROC	-TYI	PE L	.ATC	H, N	4ON()L11	HIC		'nE
OF PAGES Defense El Supply Cer	nter nio nte : ber 1					API	PRO E	U IVE	00	and the	DE	NT.	y No).	TI CM SI	TLI OS LIC WG	OCT/ ON	O.	-TYI	PE L	.atc	H, N	- E)L11	HIC		Έ


DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DESC FORM 193

MAY 86

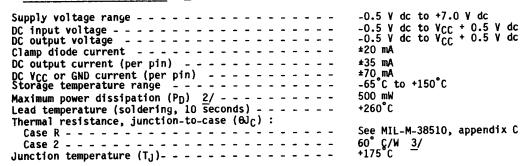
- 1.1 Scope. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".
 - 1.2 Part number. The complete part number shall be as shown in the following example:

1.2.1 Device type. The device type shall identify the circuit function as follows:

Device type Generic number Circuit function

O1 54HC533 Latch, octal D type, 3-state with inverted outputs

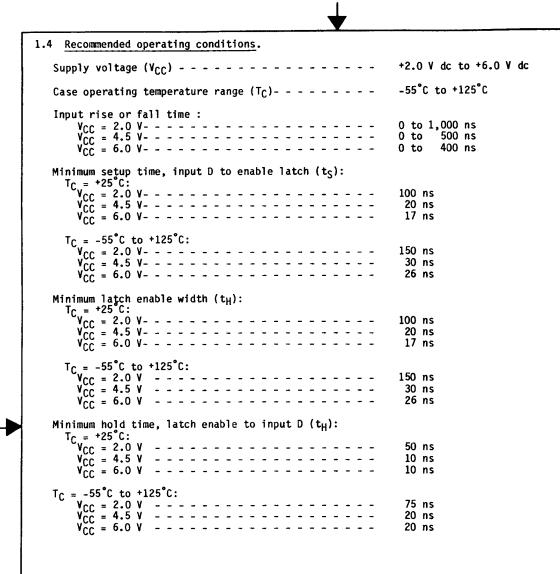
1.2.2 <u>Case outlines</u>. The case outlines shall be as designated in appendix C of MIL-M-38510, and as follows:


Outline letter

R

D-8 (20-lead, 1/4" x 1 1/16"), dual-in-line package

C-2 (20-terminal, .350" x .350"), square chip carrier package


1.3 Absolute maximum ratings. 1/

- 1/ Unless otherwise specified, all voltages are referenced to ground.
- 2/ For $T_C = +100$ °C to +125°C, derate linearly at 12 mW/°C.
- 3/ When a thermal resistance for this case is published in MIL-M-38510, appendix C, that value shall supersede the value indicated herein.

DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	A 14933		i	DWG NO. 5962-86813		
		REV		PAGE	2	

DESC FORM 144A APR 83

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE CODE IDENT. NO. 14933		DWG NO. 5962-86813		
		REV	PAGE	3	

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by contractors in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - 3. REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Truth table. The truth table shall be as specified on figure 2.
 - 3.2.3 Logic diagram. The logic diagram shall be as specified on figure 3.
 - 3.2.4 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full recommended case operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE	14933	DWG NO. 5962-86813		
		REV	F	PAGE 4	

 _	 -	

TABI	E I. <u>E1</u>	ectrical performance	characteristic	s.			
Test	Symbol		ions +125°C <u>1</u> /	Group A subgroups	Limi	ts Max	Unit
High level output voltage	V _{OH}	 V _{IN} = V _{IH} or V _{IL} I ₀ < 20 μA	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	1, 2, 3	1.9 4.4 5.9		٧
			V _{CC} = 4.5 V		3.7 5.2		
Low level output voltage	V _{OL}			1, 2, 3		0.1	٧
·		$ I_0 \le 6.0 \text{ mA}$ $ I_0 \le 7.8 \text{ mA}$	V _{CC} = 4.5 V	Г Г Г		0.4	
High level input voltage	VIH	<u>2</u> /	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	1 1, 2, 3 	1.5 3.15 4.2		٧
Low level input voltage	 VIL	_	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	 1, 2, 3 		0.3	٧
Input capacitance	CIN		°C	 4 		10 10	pF
Output capacitance	c ₀	$ V_0 = 0 V; T_C = +25^{\circ}$	С	! 4 		 20 	pF
Quiescent current	Icc	V _{CC} = 6.0 V; V _{IN} =	1, 2, 3		160	μА	
Input leakage current	IIN	V _{CC} = 6.0 V; V _{IN} =	V _{CC} or GND	1, 2, 3		±1	 μ Α
Functional tests	 	 See 4.3.1d		1 7 1			
3-state output current	I I OZ	VO = VCC or GND VIII VIII = VIH or VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIIII VIII VIII VIII VIII VIII VIII VIII VIII VIII		1, 2, 3		±10	μ A

See footnotes at end of table.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE	14933	DWG NO. 5962-86813		
		REV	PAGE	5	

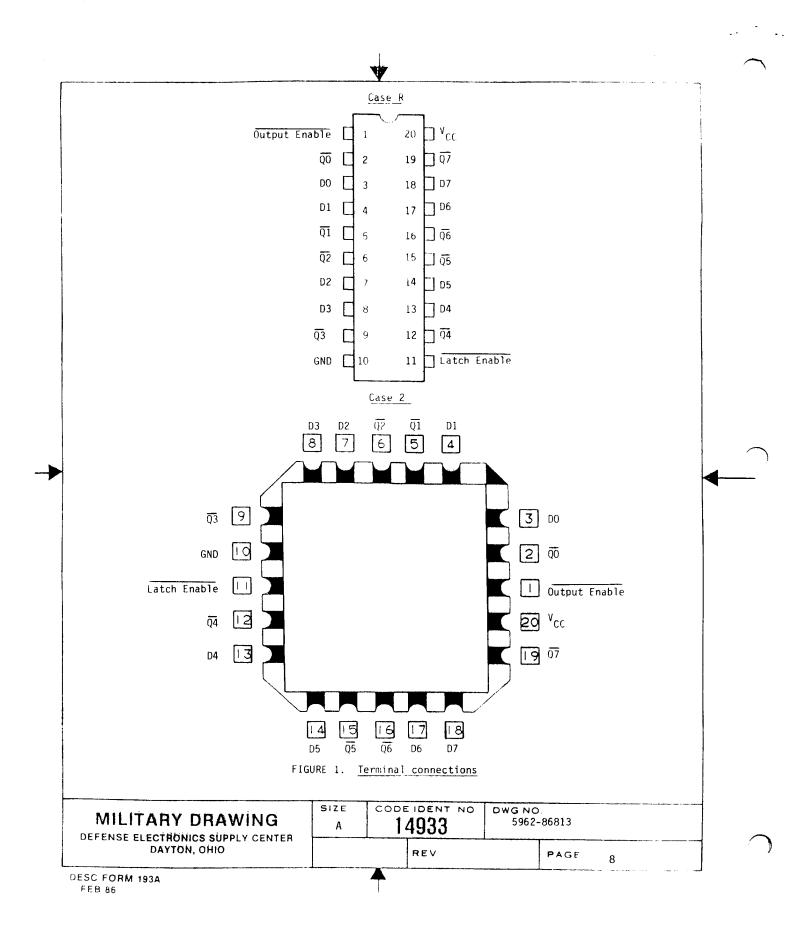
	- 1	
-		

TABLE I.	Electric	al performance chara	cteristics - C	ontinued.			
Test	Symbol	Condition	ons	Group A	T Lim	īts	Unit
		-55°C ≤ T _C ≤ +12	25°C <u>1</u> /	subgroups	Min	Max	
Propagation delay, input D to Q See figure 4	 tpHL1, tpLH1	T _C = +25°C, C _L = 50 pF ±10%	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	9 9 	 	165 33 28	ns
<u>3</u> /		T _C = -55°C, +125°C C _L = 50 pF ±10%	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	10, 11	 	250 50 43	ns
Propagation delay, latch enable to Q See figure 4	 tpHL2, tpLH2 	C _L = 50 pF ±10%		9		175 35 30	l ns l
<u>3</u> /	 	 T _C = -55°C, +125°C C _L = 50 pF ±10% 	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	 10, 11 		265 53 45	 ns
Propagation delay, output disable to Q See figure 4	t _{PLZ} ,	$ C_{L} = 50 \text{ pF } \pm 10\%$	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	9 9 		150 30 26	ns
<u>3</u> /		T _C = -55°C, +125°C	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	10, 11		225 45 39	ns
Propagation delay, output enable to Q See figure 4	 t _{PZL} , t _{PZH} 	C _L = 50 pF ±10%	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	9]	150 30 26	ns
<u>3</u> /		T _C = -55°C, +125°C 1 C _L = 50 pF ±10%	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	10, 11		225 45 39	ns

See footnotes at end of table.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE	14933	•		
		REV	PAGE 6		

FEB 86


Test	 Symbol	l Conditions	Group A	Limits	Unit	
		Conditions -55°C < T _C < +125°C <u>1</u> /	subgroups	Min Max	<u> </u>	
Transition time See figure 4	 t _{TLH} , t _{THL}	T _C = +25°C,	9	60 12 10	ns	
<u>4</u> /	; ; ;	T _C = -55°C, +125°C V _{CC} = 2.0 V C _L = 50 pF ±10% V _{CC} = 4.5 V V _{CC} = 6.0 V	10, 11	90 18 15	l ns	

- I/ For a power supply of 5 V $\pm 10\%$ the worst case output voltage (V_{OH} and V_{OL}) occur for H_C at 4.5 V. Thus the 4.5 V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5 V and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V.) The worst case leakage current (I_{IN} I_{CC} and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0 V values should be used. Power dissipation capacitance (C_{PD}), typically 50 pF, determines the no load dynamic power consumption, P_D = C_{PD} V_{CC2}f + I_{CC} V_{CC}, and the no load dynamic current consumption, I_S = C_{PD} V_{CC}f + I_{CC}.

 Iest not required if applied as a forcing function for V_{OH} or V_{OL}.

 AC testing at V_{CC} = 2.0 V and V_{CC} = 6.0 V shall be guaranteed, if not tested, to the specified parameters.
- parameters.
- Transition times (t_{TLH} , t_{THL}), if not tested, shall be guaranteed to the specified parameters.
- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 Certificate of conformance. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 Verification and review. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE A	CODE IDENT. NO. 14933	DWG NO 596	
		REV		PAGE

Inputs			Outputs		
Output Enable	<u>Latch</u> Enable	D	, Q		
L	Н	н	L		
L	Н	L	н		
L	L	х	no change		
н	Х	Х	Z		
L = Low voltage level X = Don't care					

H = High voltage level Z = High impedance

FIGURE 2. Truth table.

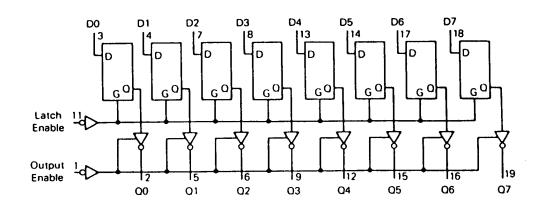
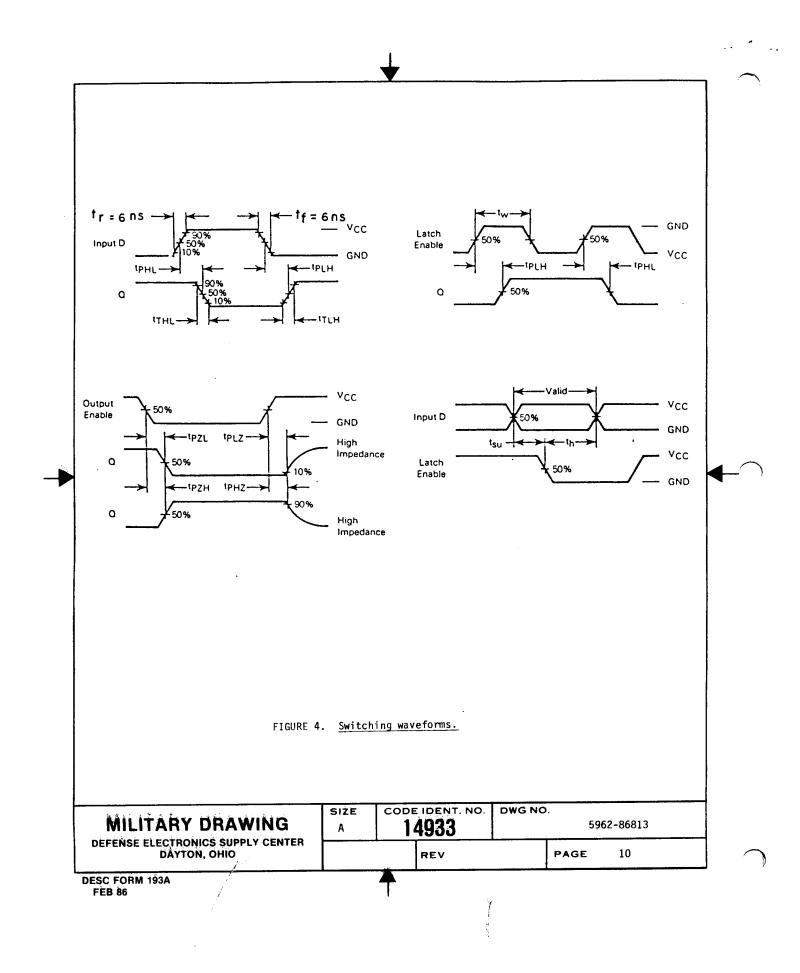
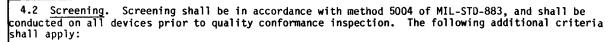




FIGURE 3. Logic diagram.

ZE A	14933	DWG NO. 5962-86813		813
	REV		PAGE	9
,	4	14933	14933	14933 5962-86

- a. Burn-in test (method 1015 of MIL-STD-883).
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein)
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

4.3.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroups 5, 6, and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
- c. Subgroup 4 ($C_{
 m IN}$ measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance. Generic test data may be used to satisfy the subgroup 4 requirements.
- d. Subgroup 7 tests sufficient to verify truth table.

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test (method 1005 of MIL-STD-883) conditions:
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by appendix B of MIL-M-38510 and method 1005 of MIL-STD-883.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE A	14933	DWG NO. 5962-86813
		REV	PAGE 11

TABLE II. Electrical test requirements.

 MIL-STD-883 test requirements 	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004) 	
Final electrical test parameters (method 5004) 	1*, 2, 9
Group A test requirements (method 5005) 	1, 2, 3, 7, 9, 1 10, 11**
Groups C and D end-point electrical parameters (method 5005)	1, 2, 3
Additional electrical subgroups for group C periodic inspections	

* PDA applies to subgroup 1.
** Subgroups 10 and 11, if not tested, shall be guaranteed to the specified limits in table I.

5. PACKAGING

- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.
- 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
 - 6.2 Replaceability. Replaceability is determined as follows:
 - a. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
 - When a QPL source is established, the part numbered device specified in this drawing will be replaced by the microcircuit identified as part number M38510/65404.
- 6.3 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.

CODE IDENT. NO. DWG NO. SIZE MILITARY DRAWING 14933 5962-86813 DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO PAGE 12 REV

6.4 Approved sources of supply. Approved sources of supply are listed herein. Additional sources will be added as they become available. The vendors listed herein have agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing part number	Vendor CAGE number	Vendor similar part number <u>1</u> /	Replacement military specification part number		
5962-8681301RX	04713 18714 27014	54HC533/BRAJC CD54HC533F/3A MM54HC533J/883	M38510/65404BRX		
5962-86813012X	04713	54HC533M/B2CJC MM54HC533E/883	M38510/65404B2X		

1/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number	Vendor name and address		
04713	Motorola, Inc. 7402 South Price Road Tempe, AZ 85283		
18714	RCA Corp. Route 202 Somerville, NJ 08876		
27014	National Semiconductor P. O. Box 58090 Santa Clara, CA 95052-8090		

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE	14933	1	DWG NO. 5962-86813		
		REV	A	PAGE	13	