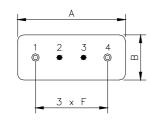


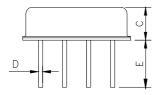
- Ideal for Receiver in 110.00 MHz
- Low-Loss, Coupled-Resonator Quartz Design
- Simple External Impedance Matching
- Rugged, Hermetic, Low Profile F-11 Package
- Complies with Directive 2002/95/EC (RoHS Compliant)

SF110L

Absolute Maximum Rating (Ta=25°C)						
Parameter		Rating	Unit			
CW RF Power Dissipation	Р	+0	dBm			
DC Voltage VDC Between Any Two Pins	V_{DC}	±10	V			
Operating Temperature Range	T _A	-20 ~ +55	°C			
Storage Temperature Range	$T_{ m stg}$	-40 ~ +85	°C			

Electronic Characteristics						
Parameter		Sym	Minimum	Typical	Maximum	Unit
Nominal Frequency (at 25°C)		$f_{\mathbb{C}}$	NS	110.00	NS	MHz
(Center frequency between 3dB point)		'C				
Insertion Loss		IL	-	4.5	5.0	dB
User Signal Passband		BW	-	±576	-	KHz
Stopband Attenuation						
	f _C - 5.0 MHz	$lpha_{\sf rel}$	50	-	-	dB
	f _C - 3.5 MHz		45	-	-	dB
	$f_{\rm C} \pm 2.0~{ m MHz}$		30	-	-	dB
	f _C + 3.5 MHz		40	-	-	dB
	f _C + 5.0 MHz		40	-	-	dB
Group Delay Deviation	on	-	-	0.7	-	μSec
Frequency Aging	Absolute Value during the First Year	fA		-	10	ppm/yr
DC Insulation Resistance Between any Two Pins		-	1.0	-	-	ΜΩ
Input / Output Impendance (nominal)		-	-	300//1.2	-	Ω//μΗ


NS = Not Specified


Notes:

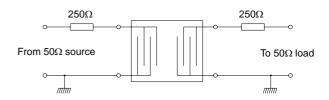
- 1. The frequency $f_{\rm C}$ is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR ≤ 1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_C. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 5. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 7. For questions on technology, prices and delivery please contact our sales offices or email to sales@vanlong.com.

Package Dimensions (F-11)

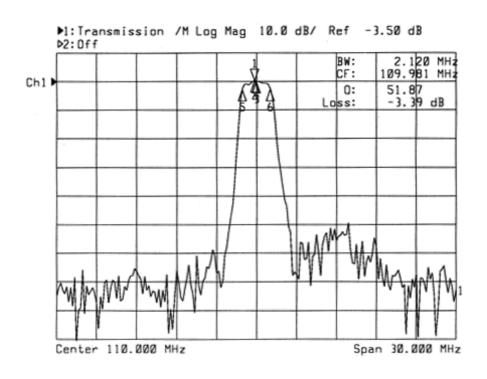
Electrical Connections

Terminals	Connection		
1	Input/Output		
2	Case Ground		
3	Case Ground		
4	Output/Input		

Package Dimensions


Dimensions	Nom. (mm)	Tol. (mm)
Α	11.0	±0.3
В	4.5	±0.3
С	3.2	±0.3
D	0.45	±0.1
E	5.0	±0.5
F	2.54	+0.2

Marking



Ink Marking
Color: Black or Blue

Test Circuit

Typical Frequency Response

Phone: +86 (10) 5820 3910

Fax: +86 (10) 5820 3915

Email: sales@vanlong.com

Web: http://www.vanlong.com