512K x 8 Static RAM #### **Features** - · High speed - $t_{AA} = 12 \text{ ns}$ - · Low active power - 504 mW (max.) - Low CMOS standby power (Commercial L version) - 1.8 mW (max.) - 2.0V Data Retention (660 µW at 2.0V retention) - · Automatic power-down when deselected - · TTL-compatible inputs and outputs - Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features # Functional Description[1] The CY7C1049BNV33 is a high-performance CMOS Static RAM organized as 524,288 words by 8 bits. Easy $\underline{\text{mem}}$ expansion is provided by an active LOW Chip Enable (CE), an active LOW Output Enable (OE), and three-state drivers. $\underline{\text{Writ}}$ ing to the device is $\underline{\text{acc}}$ complished by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. Data on the eight I/O pins (I/O $_0$ through I/O $_7$) is then written into the location specified on the address pins (A $_0$ through A $_{18}$). Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins. The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW). The CY7C1049BNV33 is available in a standard 400-mil-wide 36-pin SOJ and 44-pin TSOPII packages with center power and ground (revolutionary) pinout. #### **Selection Guide** | | | -12 | -15 | -20 | |---|---------|-----|-----|-----| | Maximum Access Time (ns) | 12 | 15 | 20 | | | Maximum Operating Current (mA) | Com'l | 200 | 180 | 160 | | | Ind'I | 220 | 200 | 170 | | Maximum CMOS Standby Current (mA) Com'l/Ind'l | | 8 | 8 | 8 | | | Com'l L | 0.5 | 0.5 | 0.5 | # **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied55°C to +125°C Supply Voltage on V_{CC} to Relative GND^[2].....-0.5V to +4.6V DC Voltage Applied to Outputs^[2] in High Z State-0.5V to V_{CC} + 0.5V DC Input Voltage^[2] -0.5V to V_{CC} + 0.5V Current into Outputs (LOW)......20 mA # **Operating Range** | Range | Ambient
Temperature | v _{cc} | |------------|------------------------|-----------------| | Commercial | 0°C to +70°C | $3.3V\pm0.3V$ | | Industrial | –40°C to +85°C | | # DC Electrical Characteristics Over the Operating Range | | | | | | -12 | | -15 | | -20 | | |------------------|--|---|-------------|------|-----------------------|------|-----------------------|-----------|-----------------------|------| | Parameter | Description | Test Conditions | | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | V _{OH} | Output HIGH
Voltage | $V_{CC} = Min.,$ $I_{OH} = -4.0 \text{ mA}$ | | 2.4 | | 2.4 | | 2.4 | | V | | V _{OL} | Output LOW Voltage | V _{CC} = Min.,
I _{OL} = 8.0 mA | | | 0.4 | | 0.4 | | 0.4 | V | | V_{IH} | Input HIGH Voltage | | - | | V _{CC} + 0.5 | 2.2 | V _{CC} + 0.5 | 2.2 | V _{CC} + 0.5 | V | | V_{IL} | Input LOW Voltage ^[2] | | | -0.5 | 0.8 | -0.5 | 0.8 | -0.5 | 0.8 | V | | I _{IX} | Input Leakage
Current | GND ≤ V _I ≤ V _{CC} | | -1 | +1 | -1 | +1 | –1 | +1 | μА | | l _{OZ} | Output Leakage
Current | $GND \leq V_{OUT} \leq V_{CC},$ Output Disabled | | -1 | +1 | -1 | +1 | -1 | +1 | μА | | I _{CC} | V _{CC} Operating | V _{CC} = Max., | Com'l | | 200 | | 180 | | 160 | mA | | | Supply Current | $f = f_{MAX} = 1/t_{RC}$ | Ind'I | | 220 | | 200 | | 170 | mA | | I _{SB1} | Automatic CE
Power-Down
Current
—TTL Inputs | Max. V_{CC} , $\overline{CE} \ge V_{IH}$
$V_{IN} \ge V_{IH}$ or
$V_{IN} \le V_{IL}$, $f = f_{MAX}$ | | | 30 | | 30 | | 30 | mA | | I _{SB2} | Automatic CE | Max. V _{CC} , | Com'l/Ind'l | | 8 | | 8 | | 8 | mA | | | Power-Down Current —CMOS Inputs | $CE \ge V_{CC} - 0.3V$,
$V_{IN} \ge V_{CC} - 0.3V$,
or $V_{IN} \le 0.3V$, $f = 0$ | Com'l L | | 0.5 | | 0.5 | | 0.5 | mA | # Capacitance^[3] | Parameter | Description | Test Conditions | Max. | Unit | |------------------|-------------------|--|------|------| | C _{IN} | Input Capacitance | $T_A = 25^{\circ}C, f = 1 \text{ MHz}, \\ V_{CC} = 3.3V$ | 8 | pF | | C _{OUT} | I/O Capacitance | | 8 | pF | #### Notes: - 1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com. 2. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns. ^{3.} Tested initially and after any design or process changes that may affect these parameters. ### **AC Test Loads and Waveforms** # AC Switching Characteristics^[4] Over the Operating Range | | | - | 12 | -15 | | -20 | | | |--------------------------|--|------|------|------|------|------|------|------| | Parameter | Description | Min. | Max. | Min. | Max. | Min. | Max. | Unit | | Read Cycle | | | I | ı | I | | | II. | | t _{power} | V _{CC} (typical) to the First Access ^[5] | 1 | | 1 | | 1 | | μS | | t _{RC} | Read Cycle Time | 12 | | 15 | | 20 | | ns | | t _{AA} | Address to Data Valid | | 12 | | 15 | | 20 | ns | | t _{OHA} | Data Hold from Address Change | 3 | | 3 | | 3 | | ns | | t _{ACE} | CE LOW to Data Valid | | 12 | | 15 | | 20 | ns | | t _{DOE} | OE LOW to Data Valid | | 6 | | 7 | | 8 | ns | | t _{LZOE} | OE LOW to Low Z | 0 | | 0 | | 0 | | ns | | t _{HZOE} | OE HIGH to High Z ^[6, 7] | | 6 | | 7 | | 8 | ns | | t _{LZCE} | CE LOW to Low Z ^[7] | 3 | | 3 | | 3 | | ns | | t _{HZCE} | CE HIGH to High Z ^[6, 7] | | 6 | | 7 | | 8 | ns | | t _{PU} | CE LOW to Power-Up | 0 | | 0 | | 0 | | ns | | t _{PD} | CE HIGH to Power-Down | | 12 | | 15 | | 20 | ns | | Write Cycle [[] | [8, 9] | | | | | | | | | t _{WC} | Write Cycle Time | 12 | | 15 | | 20 | | ns | | t _{SCE} | CE LOW to Write End | 10 | | 12 | | 13 | | ns | | t _{AW} | Address Set-Up to Write End | 10 | | 12 | | 13 | | ns | | t _{HA} | Address Hold from Write End | 0 | | 0 | | 0 | | ns | | t _{SA} | Address Set-Up to Write Start | 0 | | 0 | | 0 | | ns | | t _{PWE} | WE Pulse Width | 10 | | 12 | | 13 | | ns | | t _{SD} | Data Set-Up to Write End | 7 | | 8 | | 9 | | ns | | t _{HD} | Data Hold from Write End | 0 | | 0 | | 0 | | ns | | t _{LZWE} | WE HIGH to Low Z ^[7] | 3 | | 3 | | 3 | | ns | | t _{HZWE} | WE LOW to High Z ^[6, 7] | | 6 | | 7 | | 8 | ns | #### Notes: ^{4.} Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance. ^{5.} This part has a voltage regulator which steps down the voltage from 5V to 3.3V internally. T. Topower time has to be provided initially before a read/write operation is started. ^{6.} t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ± 500 mV from steady-state voltage. HazoE, HazoE, and HazWE are specified with a load capabilative of 5 h as in part (b) or less toads. Intainstant a 150 hr from steady-state voltage. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device. The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write. The minimum write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}. ^{10.} No input may exceed V_{CC} + 0.5V ^{11. .}t_r \leq 3 ns for the -12 and -15 speeds. t_r \leq 5 ns for the -20 ns and slower speeds. # Data Retention Characteristics Over the Operating Range (For L version only) | Parameter | Description | Conditions ^[10] | Min. | Max | Unit | |---------------------------------|--------------------------------------|--|-----------------|-----|------| | V_{DR} | V _{CC} for Data Retention | | 2.0 | | V | | I _{CCDR} | Data Retention Current | $\frac{V_{CC} = V_{DR} = 2.0V,}{CE \ge V_{CC} - 0.3V}$ | | 330 | μΑ | | t _{CDR} ^[3] | Chip Deselect to Data Retention Time | $V_{\text{IN}} \ge V_{\text{CC}} - 0.3V$ $V_{\text{IN}} \ge V_{\text{CC}} - 0.3V \text{ or } V_{\text{IN}} \le 0.3V$ | 0 | | ns | | t _R ^[11] | Operation Recovery Time | | t _{RC} | | ns | # **Data Retention Waveform** # **Switching Waveforms** Read Cycle No. 1^[12, 13] # Read Cycle No. 2 (OE Controlled)[13, 14] #### Notes - 12. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$. - 13. WE is HIGH for read cycle. - 14. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW. # Switching Waveforms (continued) Write Cycle No. 1 (WE Controlled, OE HIGH During Write)[15, 16] Write Cycle No. 2 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[16] # **Truth Table** | CE | OE | WE | I/O ₀ – I/O ₇ | Mode | Power | |----|----|----|-------------------------------------|----------------------------|----------------------------| | Н | Х | Χ | High Z | Power-Down | Standby (I _{SB}) | | L | L | Н | Data Out | Read | Active (I _{CC}) | | L | Х | L | Data In | Write | Active (I _{CC}) | | L | Н | Н | High Z | Selected, Outputs Disabled | Active (I _{CC}) | ^{15.} Data I/O is high-impedance if $\overline{\text{OE}} = \text{V}_{\text{IH}}$. 16. If $\overline{\text{CE}}$ goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state. 17. During this period the I/Os are in the output state and input signals should not be applied. # **Ordering Information** | Speed
(ns) | Ordering Code | Package
Name | Package Type | Operating
Range | |---------------|----------------------|-----------------|--|--------------------| | 12 | CY7C1049BNV33-12ZC | 51-85087 | 44-Pin TSOP II Z44 | Commercial | | | CY7C1049BNV33-12VXC | 51-85090 | 36-Lead (400-Mil) Molded SOJ (Pb-free) | | | | CY7C1049BNV33-12VI | 51-85090 | 36-Lead (400-Mil) Molded SOJ | Industrial | | | CY7C1049BNV33-12VXI | 51-85090 | 36-Lead (400-Mil) Molded SOJ (Pb-free) | | | 15 | CY7C1049BNV33-15VC | 51-85090 | 36-Lead (400-Mil) Molded SOJ | Commercial | | | CY7C1049BNV33-15VXC | 51-85090 | 36-Lead (400-Mil) Molded SOJ (Pb-free) | | | | CY7C1049BNV33L-15VXC | 51-85090 | 36-Lead (400-Mil) Molded SOJ (Pb-free) | | | | CY7C1049BNV33-15ZC | 51-85087 | 44-Pin TSOP II Z44 | | | | CY7C1049BNV33-15VI | 51-85090 | 36-Lead (400-Mil) Molded SOJ | Industrial | | | CY7C1049BNV33-15VXI | 51-85090 | 36-Lead (400-Mil) Molded SOJ (Pb-free) | | | | CY7C1049BNV33-15ZI | 51-85087 | 44-Pin TSOP II Z44 | | | 20 | CY7C1049BNV33-20VC | 51-85090 | 36-Lead (400-Mil) Molded SOJ | Commercial | | | CY7C1049BNV33-20VXC | 51-85090 | 36-Lead (400-Mil) Molded SOJ (Pb-free) | | | | CY7C1049BNV33-20VXI | 51-85090 | 36-Lead (400-Mil) Molded SOJ (Pb-free) | Industrial | Please contact local sales representative regarding availability of these parts # **Package Diagrams** #### Package Diagrams (continued) #### 44-Pin TSOP II Z44 (51-85087) DIMENSION IN MM (INCH MAX MINI All product and company names mentioned in this document may be the trademarks of their respective holders. # **Document History Page** | | Document Title: CY7C1049BNV33 512K x 8 Static RAM Document Number: 001-06432 | | | | | | | |------|--|---------------|--------------------|-----------------------|--|--|--| | REV. | ECN NO. | Issue
Date | Orig. of
Change | Description of Change | | | | | ** | 423847 | See ECN | NXR | New Data Sheet | | | |