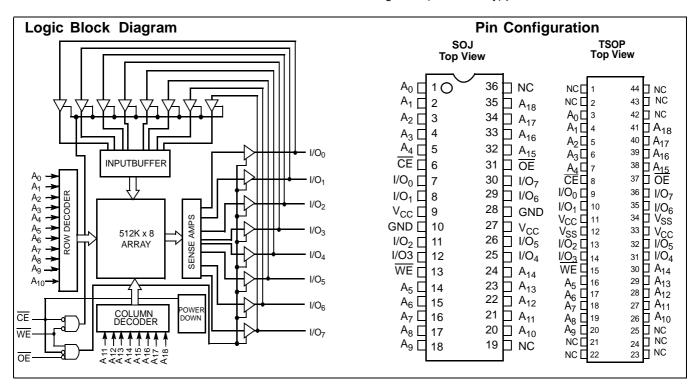


512K x 8 Static RAM

Features

- · High speed
 - $t_{AA} = 12 \text{ ns}$
- · Low active power
 - 504 mW (max.)
- Low CMOS standby power (Commercial L version)
 - 1.8 mW (max.)
- 2.0V Data Retention (660 µW at 2.0V retention)
- · Automatic power-down when deselected
- · TTL-compatible inputs and outputs
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features


Functional Description[1]

The CY7C1049BNV33 is a high-performance CMOS Static RAM organized as 524,288 words by 8 bits. Easy $\underline{\text{mem}}$ expansion is provided by an active LOW Chip Enable (CE), an active LOW Output Enable (OE), and three-state drivers. $\underline{\text{Writ}}$ ing to the device is $\underline{\text{acc}}$ complished by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. Data on the eight I/O pins (I/O $_0$ through I/O $_7$) is then written into the location specified on the address pins (A $_0$ through A $_{18}$).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1049BNV33 is available in a standard 400-mil-wide 36-pin SOJ and 44-pin TSOPII packages with center power and ground (revolutionary) pinout.

Selection Guide

		-12	-15	-20
Maximum Access Time (ns)	12	15	20	
Maximum Operating Current (mA)	Com'l	200	180	160
	Ind'I	220	200	170
Maximum CMOS Standby Current (mA) Com'l/Ind'l		8	8	8
	Com'l L	0.5	0.5	0.5

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied55°C to +125°C

Supply Voltage on V_{CC} to Relative GND^[2].....-0.5V to +4.6V

DC Voltage Applied to Outputs^[2] in High Z State-0.5V to V_{CC} + 0.5V DC Input Voltage^[2] -0.5V to V_{CC} + 0.5V Current into Outputs (LOW)......20 mA

Operating Range

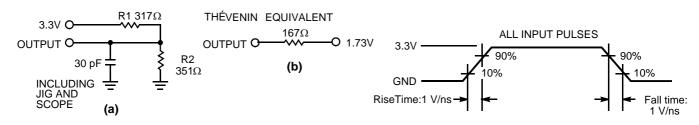
Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	$3.3V\pm0.3V$
Industrial	–40°C to +85°C	

DC Electrical Characteristics Over the Operating Range

					-12		-15		-20	
Parameter	Description	Test Conditions		Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.,$ $I_{OH} = -4.0 \text{ mA}$		2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA			0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		-		V _{CC} + 0.5	2.2	V _{CC} + 0.5	2.2	V _{CC} + 0.5	V
V_{IL}	Input LOW Voltage ^[2]			-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Leakage Current	GND ≤ V _I ≤ V _{CC}		-1	+1	-1	+1	–1	+1	μА
l _{OZ}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC},$ Output Disabled		-1	+1	-1	+1	-1	+1	μА
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l		200		180		160	mA
	Supply Current	$f = f_{MAX} = 1/t_{RC}$	Ind'I		220		200		170	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	Max. V_{CC} , $\overline{CE} \ge V_{IH}$ $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$			30		30		30	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l/Ind'l		8		8		8	mA
	Power-Down Current —CMOS Inputs	$CE \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$, $f = 0$	Com'l L		0.5		0.5		0.5	mA

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz}, \\ V_{CC} = 3.3V$	8	pF
C _{OUT}	I/O Capacitance		8	pF


Notes:

- 1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com. 2. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.

^{3.} Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

AC Switching Characteristics^[4] Over the Operating Range

		-	12	-15		-20		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle			I	ı	I			II.
t _{power}	V _{CC} (typical) to the First Access ^[5]	1		1		1		μS
t _{RC}	Read Cycle Time	12		15		20		ns
t _{AA}	Address to Data Valid		12		15		20	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE LOW to Data Valid		12		15		20	ns
t _{DOE}	OE LOW to Data Valid		6		7		8	ns
t _{LZOE}	OE LOW to Low Z	0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		6		7		8	ns
t _{LZCE}	CE LOW to Low Z ^[7]	3		3		3		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		6		7		8	ns
t _{PU}	CE LOW to Power-Up	0		0		0		ns
t _{PD}	CE HIGH to Power-Down		12		15		20	ns
Write Cycle [[]	[8, 9]							
t _{WC}	Write Cycle Time	12		15		20		ns
t _{SCE}	CE LOW to Write End	10		12		13		ns
t _{AW}	Address Set-Up to Write End	10		12		13		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	10		12		13		ns
t _{SD}	Data Set-Up to Write End	7		8		9		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3		3		3		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		6		7		8	ns

Notes:

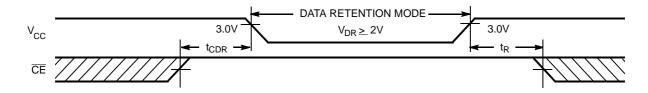
^{4.} Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

^{5.} This part has a voltage regulator which steps down the voltage from 5V to 3.3V internally. T. Topower time has to be provided initially before a read/write operation is started.

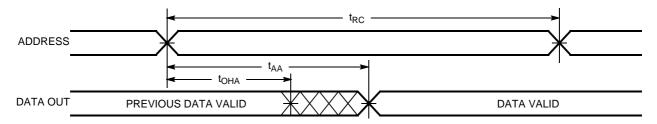
^{6.} t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ± 500 mV from steady-state voltage.

HazoE, HazoE, and HazWE are specified with a load capabilative of 5 h as in part (b) or less toads. Intainstant a 150 hr from steady-state voltage.
 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
 The minimum write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

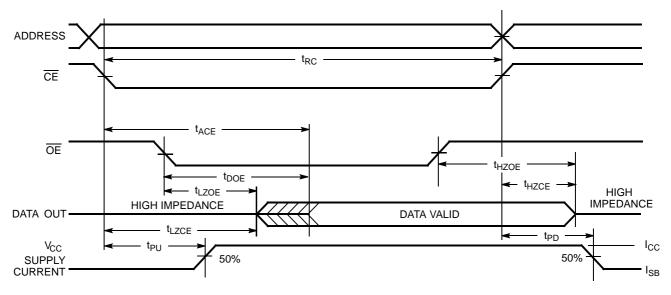
^{10.} No input may exceed V_{CC} + 0.5V


^{11. .}t_r \leq 3 ns for the -12 and -15 speeds. t_r \leq 5 ns for the -20 ns and slower speeds.

Data Retention Characteristics Over the Operating Range (For L version only)


Parameter	Description	Conditions ^[10]	Min.	Max	Unit
V_{DR}	V _{CC} for Data Retention		2.0		V
I _{CCDR}	Data Retention Current	$\frac{V_{CC} = V_{DR} = 2.0V,}{CE \ge V_{CC} - 0.3V}$		330	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time	$V_{\text{IN}} \ge V_{\text{CC}} - 0.3V$ $V_{\text{IN}} \ge V_{\text{CC}} - 0.3V \text{ or } V_{\text{IN}} \le 0.3V$	0		ns
t _R ^[11]	Operation Recovery Time		t _{RC}		ns

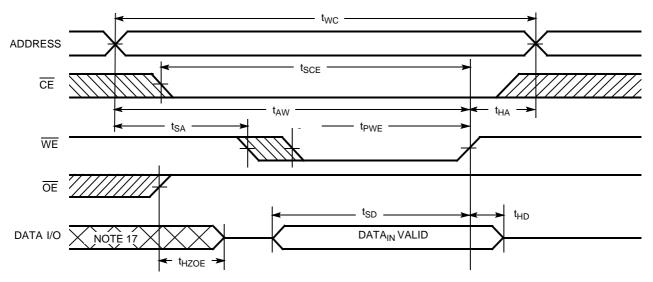
Data Retention Waveform



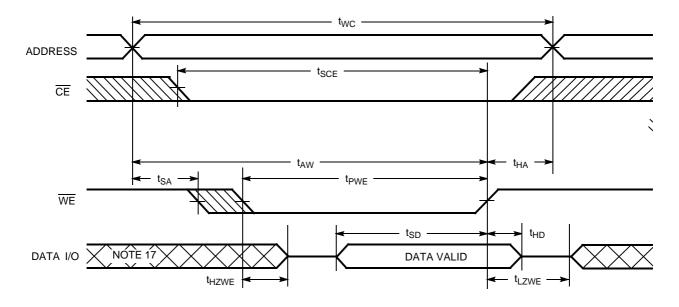
Switching Waveforms

Read Cycle No. 1^[12, 13]

Read Cycle No. 2 (OE Controlled)[13, 14]


Notes

- 12. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 13. WE is HIGH for read cycle.
- 14. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (WE Controlled, OE HIGH During Write)[15, 16]

Write Cycle No. 2 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[16]

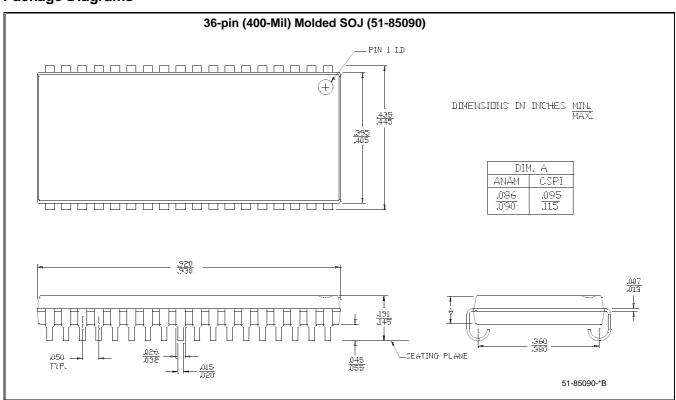
Truth Table

CE	OE	WE	I/O ₀ – I/O ₇	Mode	Power
Н	Х	Χ	High Z	Power-Down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

^{15.} Data I/O is high-impedance if $\overline{\text{OE}} = \text{V}_{\text{IH}}$.

16. If $\overline{\text{CE}}$ goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

17. During this period the I/Os are in the output state and input signals should not be applied.

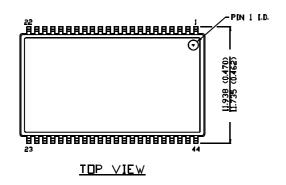


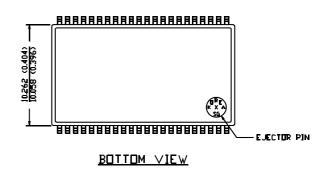
Ordering Information

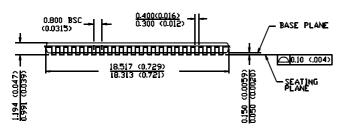
Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C1049BNV33-12ZC	51-85087	44-Pin TSOP II Z44	Commercial
	CY7C1049BNV33-12VXC	51-85090	36-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1049BNV33-12VI	51-85090	36-Lead (400-Mil) Molded SOJ	Industrial
	CY7C1049BNV33-12VXI	51-85090	36-Lead (400-Mil) Molded SOJ (Pb-free)	
15	CY7C1049BNV33-15VC	51-85090	36-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1049BNV33-15VXC	51-85090	36-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1049BNV33L-15VXC	51-85090	36-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1049BNV33-15ZC	51-85087	44-Pin TSOP II Z44	
	CY7C1049BNV33-15VI	51-85090	36-Lead (400-Mil) Molded SOJ	Industrial
	CY7C1049BNV33-15VXI	51-85090	36-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1049BNV33-15ZI	51-85087	44-Pin TSOP II Z44	
20	CY7C1049BNV33-20VC	51-85090	36-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1049BNV33-20VXC	51-85090	36-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1049BNV33-20VXI	51-85090	36-Lead (400-Mil) Molded SOJ (Pb-free)	Industrial

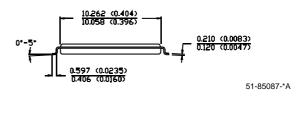
Please contact local sales representative regarding availability of these parts

Package Diagrams






Package Diagrams (continued)


44-Pin TSOP II Z44 (51-85087)

DIMENSION IN MM (INCH MAX MINI

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

	Document Title: CY7C1049BNV33 512K x 8 Static RAM Document Number: 001-06432						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change			
**	423847	See ECN	NXR	New Data Sheet			