TOSHIBA Bi-CMOS Integrated Circuit Silicon Monolithic

TB2118FG

High Speed PLL For DTS

TB2118FG is a high-speed phase-locked loop (PLL) LSI for car audio tuners with a built-in charge pump circuit. All functions are controlled through serial bus lines. The device is used to configure high-performance digital tuning systems.

Features

- Built-in high-speed program divider with built-in prescalers. FM: 30~150MHz (pulse swallowing method)
 AM: 1~40MHz (pulse swallowing method)
 - AM: 1~40MHz (pulse swallowing method)
- Phase comparator outputs are constant current output for both FM and AM. Current values can be switched using serial data. In high-speed mode for large current output seek, the lockup time between FM band edges can be set to approx. 500µs by selecting an appropriate VT range and low-pass filter constant.
- RDS supported N-value data and charge pump output current data (total of 18-bits) can be selected using two resisters.
- Built-in low-pass filter op-amps for FM and AM.
- Built-in 20-bit binary counter for counting IF frequency.
- Crystal oscillator can be used 10.25MHz or 10.35MHz.
- Two output ports (open-collector output) and two I / O ports (CMOS) supported.
- Package is SSOP 24 pin.

(Note) Pins 1 and 24 are susceptible to surge. Take care when handling.

Pin Connection

X _O		24	∎ XI
OSC	2	23	A–GND
CE	3	22	REG.
D _{IN}	4	21	V _{CC}
CK	5	20	AM CP
D _{OUT}	6	19	VT
SR	7	18	FM CP
I / O–1	8	17	D-GND
I / O–2	9	16	AM _{VCO}
OUT-1	10	15	FM _{VCO}
OUT-2	11	14	V _{DD}
V _{DD2}	12	13	IFC

Block Diagram

Pin Function

Pin No.	Symbol	Pin Name	Function And Operation	Remarks
1	x _o	Crystal	Serial data input: Setting F0 and F1 bits selects the	X _{IN} OSC circuit
24	XI	oscillator pins	frequency of the crystal oscillator to be connected.	OSC O
2	osc	Crystal oscillator output pin	 Setting the OSC bit outputs the oscillation frequency. 0 = output off 1 = output on 	_
15	FM _{VCO}	FM band local signal input	 Serial data input: When AM / FM bit = "0" FM_{VCO} is selected. Input signal is directly transferred to the swallow counter. Input frequency: 30 to 150MHz Divided frequency: 528 to 65.535 	Rfin W
16	AM _{VCO}	AM band local signal input	 Serial data input: When AM / FM bit = "1" AM_{VCO} is selected. When mode = "1" AM band is selected (by pulse swallow). Input frequency: 1.0 to 40MHz Divided frequency: 528 to 65.535 	
13	IFC	IF signal input	 input frequency: 0.1 to 15MHz The selected signal is input to a 20–bit general–purpose counter via a gate circuit. 	R _{fIF}
3	CE	Chip enable input	Serial interface pins. • Data used for controlling TB2118FG are	CE / CK / DIN
5	СК	Clock input	 Control data are input via D_{IN} in sync. With clock input via CK. Control data 	Ронт
4	D _{IN}	Serial data input	input start / stop is specified using CE. General-purpose counter data are	Č
6	D _{OUT}	Serial data output	from D _{OUT} . • The CK / CE / D _{IN} pin is schmitt trigger input.	

Pin Function

Pin No.	Symbol	Pin Name	Function And Operation	Remarks
7	SR	Register control pin.	Selects register 1 or 2. "L" = register 1 output "H" = register 2 output	
8	I / O–1	I / O ports	 Input or output is switched in units of bits by serial data input. 	
9	I / O–2		CMOS input / CMOS output At power on, set to input ports.	
10	OUT-1	Output ports	Open collector output ports.	
11	OUT-2		· · · · · · · · · · · · · · · · · · ·	
12	V _{DD2}		 Single power supply for reference frequency block V_{DD2} = 3.0 to 5.5V (note that V_{DD} ≥ V_{DD2}) Due to the crystal high–frequency receive interference characteristic, we recommend an R_D setting so that V_{DD2} = 3.5V. 	V _{DD} (⊕
14	V _{DD}	CMOS power	Power pins for digital block (digital circuite)	
17	D-GND	pins	• V_{CC} = 4.5 to 5.5V, D–GND = 0V	
21	V _{CC}	Bipolar power	Power pins for analog block (eg, op-	_
23	A-GND	pins	• $V_{CC} = 8$ to 10V, A–GND = 0V	
22	REG.	Ripple filter connecting pin.	Ripple filter connecting pin for internal constant voltage supply. Insert about 10μ F (as high as possible) between this pin and A–GND.	_
19	VT	Tuning voltage	 Input from the plus terminal of the op-amp is internally biased to 2.5V. External crystal for phase correction is required because low gain is set by high through rate. 	

Pin Function

Pin No.	Symbol	Pin Name	Function And Operation	Remarks
20	АМ СР	AM charge pump output	Charge pump output for AM • Serial data input: When AM / FM = "1" error output from the phase comparator is output as constant current. $f_{REF} > f_{SIG}$: (-) current output $f_{REF} = f_{SIG}$: High impedance $f_{REF} < f_{SIG}$: (+) current output • Serial data: Output current can be switched using CR0 and CR1 bits. • Normally (when using AM op-amp), set the OP SEL bit to "1".	Phase comparator
18	FM CP	FM charge pump output	Charge pump output for FM • Serial data input: When AM / FM = "0" error output from the phase comparator is output as constant current. $f_{REF} > f_{SIG}$: (-) current output $f_{REF} = f_{SIG}$: High impedance $f_{REF} < f_{SIG}$: (+) current output • Serial data: Output current can be switched using CR0 and CR1 bits. • Normally (when using FM op–amp), set the OP SEL bit to "0".	Inverter amp

Operation

- 1. Configuration of control data (serial data input / output)
 - 1) Data input mode (valid data length changes according to the address.)

A ₀	A ₁	A ₂	A ₃	Input Mode	Valid Data Length	Remarks
0	#	0	1	(1)	24bits	Processes frequency change.
0	#	1	0	(2)	32bits	Processes band change.
0	#	1	1	(3)	40bits	Processes power on (initialization).

When "0" is set in bits marked with #, data are loaded to register 1; when "1" is set, to register 2.

(Note) • Either "0" or "1" can be set in bits marked with *.

• TS1 and TS2 are pins for internal testing. At power on, be sure to clear to "0" (data set).

2) Data output mode

(Note) Either "0" or "1" can be set in bits marked with *.

3) Serial data transfer formats

• Data input mode (at input, DOUT becomes high impedance.)

(Note) • Normally, DOUT is high impedance.

• During data output, data output mode is terminated by changing CE = H to L.

2. Setting reference frequency-related (reference divider block) items

1) Setting crystal oscillator (OSC)

With TB2118FG, the two-frequency oscillator shown below can be driven by self-oscillation.

F0 Bit	F1 Bit	Input Frequency
0	0	10.25MHz
0	1	10.35MHz

(Note) At power on, F0 / F1 = 0.

• Connection example

2) Setting reference frequency (R0, R1, R2)

R ₀	R ₁	R ₂	10.25MHz	10.35MHZ
0	0	0		-
1	0	0	50kHz	50kHz
0	1	0	-	-
1	1	0	-	_
0	0	1	10kHz	_
1	0	1	-	9kHz
0	1	1	_	_
1	1	1	1kHz	_

(Note) Do not select settings where ____ is enterd instead of frequency.

3) OSC output select (OSC) = oscillation frequency is output from the OSC out pin.

OSC	OSC Out Pin
0	Output off
1	Output on

(Note) At power on, OSC = 0.

(Note) Use a crystal oscillator with R_S = 50Ω and less and C_L = 12pF or less.

- 3. Setting programmable counter block
 - 1) Circuit configuration

The progammable counter block consists of a 2–modulus prescaler, 4–bit swallow counter, and 12–bit programmable binary counter.

2) Setting input pin / dividing mode (AM / FM, mode)

AM / FM	Mode	Input Pin	Input Frequency	Divided Frequency	Dividing Mode
0	0	FM _{VCO}	30~150MHz	528~65 535	By pulse swallow
1	1	AM _{VCO}	1~40MHz	320-03.333	(16–bit)

3) Setting divided frequency (P_{00} to P_{15})

• By pulse swallow (in FW or SW mode), n = 528 to 65.535

4. Control of phase comparator and charge pumps

The phase comparator compares the phase difference between the reference frequency signal (f_{REF}) and the programmable counter divisor output (f_{SIG}) and outputs the result. The constant current driver block outputs phase error signals as a current.

1) Setting charge pumps and op-amps (OPSEL)

The OPSEL bit is used to select a charge pump and an op-amp.

OPSEL	Charge Pump (CP) Output	Op–Amp	AM CP Output	FM CP Output
0	DOFM	FM amp	Hz	DO
1	DOAM	AM amp	DO	Hz

Hz = high impedance DO = tri-state output

2) Setting current value (CRO)

• AM / FM = "1" (AMIN input)

CR1	CR0	AM CP Out Output Current
0	0	±0.3mA
0	1	±0.5mA

CR1	CR0	FM CP Out Output Current
0	0	±250µA
1	0	±5mA

3) Connection example (the filter circuit is an example for reference. Check and design depending on the desired characteristics for your set.)

5. Control of general-purpose counter circuit

The general-purpose counter is a 20-bit counter used to measure the intermediate frequency. This is used at auto tuning for detecting a radio station. Setting "1" in the start bit starts counting after counter reset.

1) Circuit configuration

2) Setting IF counter gate time / wait time (G_0, G_1)

G ₀	G ₁	Gate Time	Wait Time
0	0	1ms	3 3~4 3ms
1	0	4ms	5.5° 4 .5ms
0	1	16ms	7 3~8 3mc
1	1	64ms	7.5*0.505

3) Counter output data (C₀₀ to C₁₉)

4) Detecting counter operating status

Busy	Counter Operating Status	Over	Counter Value
0	Counting ended	0	$N \le 2^{20} - 1$
1	Counting	1	$N \ge 2^{20}$ (overflow)

(*) Setting the DOC bit to "1" enables constant output of busy state from the D_{OUT} pin.
 Note that at this time, the busy status is the inversion of the busy bit: busy status = 0 (counting) and busy status = 1 (counting ended).

The DOC bit is set to "0" at power on.

5) Counter timing (when PLL data are updated and counting starts)

OUT1, 2	Output Port Status
0	Driver off (high impedance)
1	Driver on (low level)

2) Setting I / O control and I / O output ports (I / O1, I / O2, I / OC1, IOC2)

IOC1, 2	I / O Port Setting
0	Input port (CMOS input)
1	Output port (CMOS output)

l / O1, 2	Output Port Status
0	Low-level output
1	High–level output

(Note) Valid only when set to output port.

 \bullet At power on, I / O ports are set to input.

3) Reading I / O port data (I / O1, I / O2: Output mode data)

I / O1, 2	Input Port Status
0	Low-level output
1	High-level output

(Note) Valid only when set to input port.

7. Others

1) Control (DOC) of serial data output (DOUT)

DOC	D _{OUT} Output Status	Remarks
0	Other than in output made, high impedance.	—
1	Outputs BUSY status of general–purpose counter (constant output mode).	0: Counting 1: Counting ended

• At power on, DOC = 0.

Absolute Maximum Ratings (Ta = 25°C)

Characteristics	Symbol	Rating	Unit
Power supply voltage (1)	V _{DD}	-0.3~6.0	V
Power supply voltage (2)	V _{CC}	-0.3~11.0	V
V _{DD} input voltage	V _{IN (1)}	-0.3~V _{DD} +0.3	V
V _{CC} input voltage	V _{IN (2)}	-0.3~V _{CC} +0.3	V
Applied voltage on pins (6), (10), (11)	V _{CEO}	12	V
Powe dissipation	PD	430	mW
Operating temperature	T _{opr}	-40~85	°C
Storage temperature	T _{stg}	-65~150	°C

Electrical Characteristics (unless otherwise specified, Ta = 25°C, V_{CC} = 8.5, V_{DD} = 5V, V_{DD2} = 3.5V, V_{SS} = GND = 0V)

Supply Voltage And Current (V_{CC}, V_{DD}, V_{DD2}, A–GND, D–GND)

Characteristics	Symbol	Test Cir– cuit	Test C	Min.	Тур.	Max.	Unit	
	V _{CC}				8.0	8.5	10.0	
Operating power supply voltage	V _{DD}	—	Ta = –40∼85°C		4.5	5.0	5.5	V
	V _{DD2}				3.0	3.5	5.5	
Operating power supply current	Icc		$f_{xt} = 10.25MHz$ Ta = 25°C	V _{CC} = 10V max.	I	17.0	25.0	
	I _{DD}	—		V _{DD} = 5.5V max.	-	20.0	29.0	mA
	I _{DD2}		FININ = 120INIHZ	V _{DD2} = 5.5V max.	—	0.25	1.0	

Crystal Oscillator Circuit (X_{TIN}, X_{TOUT})

Crystal oscillator frequency	f _{XT}	_	Connect the crystal oscillator to X _{TIN} and X _{TOUT} .		10.25	10.35	MHz
Oscillator output level	OSCO	1	OSC pin	100	560	_	mV _{rms}

Test Circuit 1

Operating Frequency Range (FM_{IN}, AM_{IN}, AM / FM IF)

Characteristics	Symbol	Test Cir– cuit	Test Condition	Min.	Тур.	Max.	Unit
FM _{VCO} operating frequency	fFM		V _{IN} = 0.2Vp–p, sine wave input, capacitive coupling, by pulse swallow	30	~	150	MHz
AM _{VCO} operating frequency	f _{AM}		V _{IN} = 0.2Vp–p, sine wave input, capacitive coupling, by pulse swallow	1.0	{	40	MHz
IFC operating frequency	fIF	_	V _{IN} = 0.2Vp–p, sine wave input, capacitive coupling, IFC pin	0.1	~	15	MHz

Input Range (FM_{VCO}, AM_{VCO}, IFC)

IFC input level	IFC V _{IN}	_	Input frequency 0.1~15MHz	0.2	~	V _{DD} -0.5	Vp-p				
FM _{VCO} input level	FM _{VCO} VIN		Input frequency 30~120MHz (*)	0.141	~	V _{DD} -0.5					
			Input frequency 120~150MHz	0.2	~	V _{DD} -0.5	vh-h				
AM _{VCO} input level	AM _{VCO} V _{IN}	AM _{VCO} –	AM _{VCO}	AM _{VCO}	AM _{VCO}		Input frequency 1.0~15MHz (*)	0.113	~	V _{DD} -0.5	Vo. n
				Input frequency 15~40MHz	0.2	~	V _{DD} -0.5	vh-h			

(*) Weekly code 9843~.

Serial Interface (CE, CK, D_{IN}, D_{OUT}, SR)

Input voltage Low I	High level	V _{IH (1)}	_	CE, CK, D _{IN} , SR pins		V _{DD} -1.5	~	V _{DD}	V
	Low level	V _{IL (1)}				0	~	1.5	
Input	High level	I _{IH (1)}			V _{IH} = 5V	-1.0	—	+1.0	
current	Low level	I _{IL (1)}	_		V _{IL} = 0V	-1.0	-	+1.0	μΑ
Low–level current	output	I _{OL (1)}	—		V _{OL} = 0.2V	0.8	3.0	—	mA
Output off- current	-leak	I _{OFF (1)}	—		V _{OH} = 5V	-1.0		+1.0	μA

Output Ports (out-1, out-2)

Low-level output current	I _{OL (2)}	_	V _{OL} = 0.2V	0.8	3.0	_	mA
Output off–leak current	I _{OFF (2)}	I	V _{OH} = 10V	-1.0	-	+1.0	μA

I / Oports (I / 0–1, I / 0–2)

Input current	High level	I _{IH (2)}		V _{IH} = 5V	-1.0	—	+1.0	μA
	Low level	I _{IL (2)}		V _{IL} = 0V	-1.0		+1.0	
Input voltage	High level	V _{IH (2)}	_		V _{DD} -1.5	~	V _{DD}	V
	Low level	V _{IL (2)}			0	~	1.5	
Output current	High level	I _{OH (1)}		V _{OH} = 4.0V	-5.0	-7.5	—	mA
	Low level	I _{OL (3)}	_	V _{OL} = 1.0V	3.5	4.5	_	

Charge Pumps (AMCPOUT, FMCPOUT)

Characteristics	Symbol	Test	Test			Min		Мох	Unit
		cuit	Condition	CR0 Bit	CR1 Bit	IVIIII.	тур.	wax.	
FM charge pump output current	IOFM (1)	—	DOFM pin	0	0	±0.20	±0.25	±0.4	mA
	I _{OFM (2)}			0	1	±4.0	±5.0	±7.0	
AM charge pump output current	I _{OAM (1)}	—	DOAM sin	0	0	±0.2	±0.3	±0.45	m۸
	I _{OAM (2)}	_		1	0	±0.4	±0.5	±0.75	ШA

OP-Amps (V_T)

AM op-amp output current	I _{OL}		$V_{IN} = V_{DD}, V_{OUT} = 8.5V$	1.0	2.0	_	mA
	I _{ОН}		V _{IN} = GND, V _{OUT} = 0V	-1.0	-2.0	I	
FM op–amp output current	I _{OL}		V _{IN} = V _{DD} , V _{OUT} = 8.5V	5.0	9.0	I	mA
	I _{ОН}		V _{IN} = GND, V _{OUT} = 0V	-5.0	-9.0		
V _T output voltage	V _{VT}	_		0.3	~	VCC -1.1	V

Application Circuit 1

Package Dimensions

SSOP24-P-300-1.00

Weight: 0.31g (typ.)

Unit : mm

RESTRICTIONS ON PRODUCT USE

060116EBA

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_C
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E

About solderability, following conditions were confirmed

- Solderability
 - (1) Use of Sn-37Pb solder Bath
 - solder bath temperature = 230°C
 - · dipping time = 5 seconds
 - \cdot the number of times = once
 - use of R-type flux
 - (2) Use of Sn-3.0Ag-0.5Cu solder Bath
 - solder bath temperature = 245°C
 - dipping time = 5 seconds
 - \cdot the number of times = once
 - · use of R-type flux