

FP2250QFN

PACKAGED LOW NOISE, HIGH LINEARITY PHEMT

FEATURES

- ♦ 29 dBm Output Power at 1-dB Compression
- ♦ 17 dB Power Gain at 2 GHz
- ♦ 1.0 dB Noise Figure at 2 GHz
- ♦ 42 dBm Output IP3
- ♦ 50% Power-Added Efficiency

DESCRIPTION AND APPLICATIONS

The FP2250QFN is a high performance, leadless, encapsulated packaged Aluminum Gallium Arsenide / Indium Gallium Arsenide (AlGaAs/InGaAs) pseudomorphic High Electron Mobility Transistor (pHEMT). It utilizes a 0.25 µm x 2250 µm Schottky barrier gate, defined by electronbeam photolithography. The recessed "mushroom" gate structure minimizes parasitic gate-source and gate resistance. The epitaxial structure and processing have been optimized for reliable highpower applications. The FP2250's active areas are passivated with Si₃N₄, and the QFN package is ideal for low-cost, high-performance applications that require a surface-mount package. Typical applications include drivers or output stages in PCS/Cellular amplifiers, WLL and WLAN systems, and other types of wireless infrastructure systems up to 10 GHz.

ELECTRICAL SPECIFICATIONS @ Tambient = 25°C

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Saturated Drain-Source Current	I_{DSS}	$V_{DS} = 2 \text{ V}; V_{GS} = 0 \text{ V}$				
FP2250QFN-1			560	635	705	mA
FP2250QFN-2			706	770	850	mA
Power at 1-dB Compression	P-1dB	$V_{DS} = 5 \text{ V}; I_{DS} = 50\% I_{DSS}$	27	29		dBm
Power Gain at 1-dB Compression	G-1dB	$V_{DS} = 5 \text{ V}; I_{DS} = 50\% I_{DSS}$	16	17		dB
Power-Added Efficiency	PAE	$V_{DS} = 5 \text{ V}; I_{DS} = 50\% I_{DSS}$		50		%
Noise Figure	NF	$V_{DS} = 5 \text{ V}; I_{DS} = 50\% I_{DSS}$		1.0		dB
Output Third-Order Intercept Point	IP3	$V_{DS} = 5V; I_{DS} = 50\% I_{DSS}$		42		dBm
Maximum Drain-Source Current	I _{MAX}	$V_{DS} = 2 \text{ V}; V_{GS} = 1 \text{ V}$	840			mA
Transconductance	G_{M}	$V_{DS} = 2 \text{ V}; V_{GS} = 0 \text{ V}$	550			mS
Gate-Source Leakage Current	I_{GSO}	$V_{GS} = -5 \text{ V}$			115	μΑ
Pinch-Off Voltage	V_P	$V_{DS} = 2 \text{ V}; I_{DS} = 11 \text{ mA}$	-2.0		-0.25	V
Gate-Source Breakdown	V_{BDGS}	$I_{GS} = 11 \text{ mA}$	-10	-12		V
Voltage Magnitude						
Gate-Drain Breakdown	V_{BDGD}	$I_{GD} = 11 \text{ mA}$	-10	-12		V
Voltage Magnitude						

All RF data tested at 2.0 GHz

Phone: (408) 988-1845 http://www.filss.com **Revised: 10/18/02** Fax: (408) 970-9950

Email: sales of Iss.com

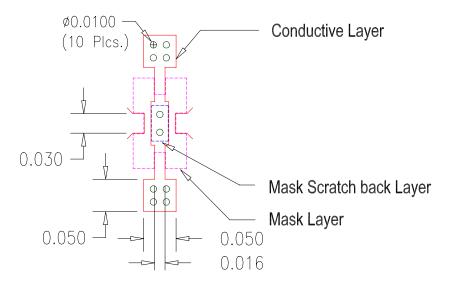
ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Test Conditions	Min	Max	Units
Drain-Source Voltage	V_{DS}	$T_{Ambient} = 22 \pm 3 ^{\circ}\text{C}$		6	V
Gate-Source Voltage	V_{GS}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		-3	V
Drain-Source Current	I_{DS}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		I_{DSS}	mA
Gate Current	I_{G}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		15	mA
RF Input Power	P _{IN}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		500	mW
Channel Operating Temperature	T_{CH}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		175	°C
Storage Temperature	T_{STG}		-65	175	°C
Total Power Dissipation	P_{TOT}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		3.75	W

Notes:

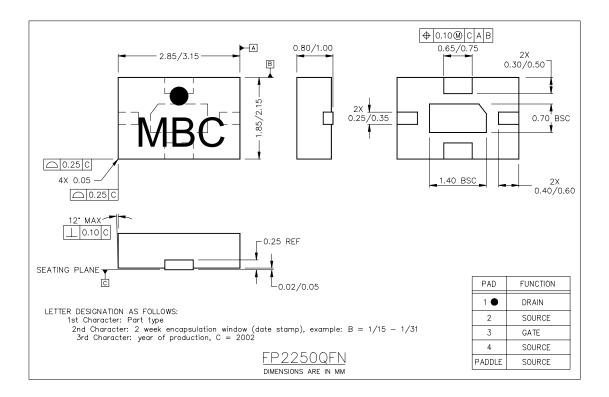
- Operating conditions that exceed the Absolute Maximum Ratings could result in permanent damage to the device.
- Power Dissipation defined as: $P_{TOT} = (P_{DC} + P_{IN}) P_{OUT}$, where

P_{DC}: DC Bias Power P_{IN}: RF Input Power P_{OUT}: RF Output Power


Absolute Maximum Power Dissipation to be de-rated as follows above 25°C:

 $P_{TOT} = 3.75W - (0.025W)^{\circ}C) \times T_{PACK}$

where T_{PACK} = source tab lead temperature. (Bottom of the Package)


• This PHEMT is susceptible to damage from Electrostatic Discharge. Proper precautions should be used when handling these devices.

PCB PAD LAYOUT

Dimentions are in Inches

PACKAGE OUTLINE

HANDLING PRECAUTIONS

To avoid damage to the devices care should be exercised during handling. Proper Electrostatic Discharge (ESD) precautions should be observed at all stages of storage, handling, assembly, and testing. These devices should be treated as Class 1A (0-500 V). Further information on ESD control measures can be found in MIL-STD-1686 and MIL-HDBK-263.

APPLICATIONS NOTES & DESIGN DATA

Applications Notes are available from your local Filtronic Sales Representative or directly from the factory. Complete design data, including S-parameters, noise data, and large-signal models are available on the Filtronic web site.

All information and specifications are subject to change without notice.