Data Sheet

CX60087

10.7 Gbps EML and LiNO₃ Modulator Driver

Key Features

- •
- High Voltage Swing: up to 6 V P-P for Single-Ended and 12 V P-P for Differential Output
- High-Speed Operation (Up to 10.7 Gbps NRZ Data)
- On-Chip Data Retiming Option
- Single-Ended Data and Clock Input with 50 Ω Termination
- Output Current of 0-100 mA into 50 Ω
- Optimized to supply an output current of 80 to 100 mA into 50 Ω
- Laser Diode Bias Current of 0 120 mA
- Duty Control, Polarity Control and Loss of Signal Indication

Product Description

Applications

- Fiber Optic Transceiver/Transponder Modules
- Fiber Optic Communication Systems (OC-192/STM-64)
- SONET/SDH Test Equipment
- Data Communications
- Voltage Driver

The CX60087 is a high-speed laser modulator driver designed for long haul applications. This driver is typically used in transmitter modules for fiberoptic communications, such as Synchronous Optical Network (SONET), Synchronous Digital Hierarchy (SDH), and Dense Wavelength Division Multiplexed (DWDM).

The device can be used as a Lithium Niobate (LiNO₃) modulator driver or EA modulator driver. When an output Bias-Tee is tied to +1.0 V, the CX60087 provides a 6 V $_{P-P}$ output swing single-ended and 12 V $_{P-P}$ swing differential into a 50 Ω load for data rates of 10.7 Gbps. When the output Bias-Tee is tied to ground the output swing is 3.5 V $_{P-P}$ single-ended at 10.7 Gbps.

The CX60087 can deliver a maximum output drive current of 100 mA and provide bias currents up to 120 mA. Figure 1 is the functional block diagram, Table 1 lists functional block descriptions, and Table 2 lists terminal name descriptions. The CX60087 is available in a 30-terminal ceramic quad flat pack as shown in Figure 13.

Figure 1. CX60087 Laser Modulator Driver Functional Block Diagram

Table 1. Functional Block Descriptions

Block	Function	
2:1 Mux	Data or retimed data select	
DC Bias Current Cntlr	Laser diode DC bias current controller	
D-FF	D-type flip flop for retiming input signal	
Driver	Output driver stage with 200 Ω on-chip back termination (variable output current)	
DrvMon	Output current and duty cycle monitor circuit (sinks 1/20 the value of driver current)	
DutyCntlr	Duty cycle control of output current (external control)	
InBuffers	Single-ended data and clock input/differential output buffer amplifiers	
LOS Detect	Loss of input signal detector	
OutBuffer	Buffer amplifier	
PolarityCntlr	Polarity control circuit	

Table 2. Terminal Name Descriptions

Number	Terminal Name	Description	Туре	I/O	Rate/DC
13	ClkIn	Clock input	CML		10 Ghz
16	ClkCap	ClkIn reference terminal			DC
11	DataIn	Data input	CML		10 Gbps
8	DataCap	DataIn reference terminal			DC
17	DutyCntl	Output current, duty cycle control signal input	Analog		DC
1	IB	Laser diode, DC bias current output	Current Sink	0	DC
2	IBCntl	DC bias current, control signal input	Analog		DC
3	IBMon	DC bias current monitor		0	DC
19	IPCntl	Output current, control signal input	Analog		DC
20	IPMonN	Output current monitor, inverted output	Current Sink	0	DC
21	IPMonP	Output current monitor, non-inverted output	Current Sink	0	DC
25	IPOutN	Inverted output	Current Output	0	10 Gbps
27	IPOutP	Non-inverted output	Current Output	0	10 Gbps
6	LOS	Loss of input or clock signal indicator output	Current Sink (1)	0	DC
5	PolCntl	Input signal polarity control signal input	ECL		DC
7	RetimDisable	Input for disabling data and clock retiming	(2)		DC

Note 1. See description of current sinking in LOS section, Figure 6.

Note 2. To select retimed data this terminal can be connected to V_{EE} or it can float. Connecting the RetimDisable terminal to ground selects non-retimed data.

Functional Description

The CX60087 translates the single ended input data on DataIn from a digital voltage signal to current signals on the complementary IPOutP, IPOutN terminals for driving a (LiNO₃) or an EML modulator.

Data is retimed with ClkIn in the D-type flip-flop (D-FF) and output to the 2:1 Mux. The 2:1 Mux under control of the RetimDisable terminal selects retimed data from the D-FF.

The duty cycle and polarity of the output signal are controlled using the DutyCntl and PolCntl pins respectively.

The data output pulse current on IPOutP/N is adjusted using the IPCntl terminal and monitored using the IPMonP and IPMonN terminals.

The DC Bias Current Controller provides current (IB) for an external diode laser. Current is adjusted using the IBCntl terminal and monitored on the IBMon terminal.

The LOS Detect circuit detects loss of input signal and indicates that condition on the LOS terminal.

High Speed Data and Clock Inputs

The DataIn and ClkIn terminals are high-speed inputs that each include a 50 Ω on-chip termination resistor to ground. These terminals are CML interface compatible.

DataIn Retiming

The DataIn signal is retimed by the D-FF with ClkIn. See Figure 2 for the DataIn and ClkIn timing relationship. Note: During retiming mode tests, with scope synchronized to the system strobe, a shift in crossover point timing of 1.0 picosecond per degree C in relation to the strobe can occur.

Figure 2. Falling Edge of ClkIn Synchronized to DataIn Signal Transition

Retiming Terminal

The RetimDisable terminal controls the 2:1 Mux output. When RetimDisable is open (floats) or is connected to VEE, retimed data is selected for output. When this terminal is grounded, the non-retimed data is selected for output.

Polarity Control

Polarity of the differential signal IPOutP/IPOutN pulse can be inverted by an external control voltage on the PolCntl terminal. With PolCntl open or connected to an ECL low, the output is inverted; with PolCntl at ground or an ECL high, the output is non-inverted.

Duty Cycle Control

DutyCntl is an analog voltage input terminal, which controls the duty cycle of the data output on IPOutP/IPOutN. Figure 3 illustrates the duty cycle as controlled by the DutyCntl voltage value.

Figure 3. Typical Data Output Duty Cycle vs. DutyCntl Voltage

Pulse Current Driver

An external signal supplied to the IpCntl terminal controls the amplitude of the pulse modulation current. Differential signals on the IPMonP/N terminals monitor the IPOutP/N modulation current. Figure 4 illustrates the output pulse current and IPMonP/N current versus the IPCntl voltage.

Figure 4. Typical Output Control Characteristics

Rev. 3, 05/18/01.

DC Bias Current Driver

The IB terminal provides an adjustable DC bias current for a laser modulator or laser diode. An external voltage on the IBCntl terminal controls the DC bias current on IB. The IBMon terminal monitors the IB current. Figure 5 illustrates the IB bias current and IB monitor currents versus the IBCntl control voltage.

Figure 5. Typical IB Control Characteristics

Loss of Signal Detection

The Loss of Signal Detection circuit (LOS Detect) indicates a loss of a valid signal in the data path (DataIn) and/or clock signal (ClkIn). If no voltage transitions occur during a specified time period, the LOS output terminal goes to a high level (ground). Figure 6 illustrates the LOS detect circuit timing waveforms.

LOS can be used by an external control circuit to shut down both the output pulse current and DC bias current drivers.

Under normal operating conditions, when data is transitioning, LOS will remain low. For an interface other than CML, the LOS output can be made ECL logic compatible with the circuits shown in Figures 10 and 11.

Figure 6. LOS Detect Circuit Timing Waveforms

Electrical Specifications

Table 3 lists the CX60087 electrical specifications. Absolute maximum ratings and recommended operating conditions are listed in Table 4 and Table 5 respectively.

Table 3. CX60087 Electrical Specifications

Tcase = 0° C to +85° C, V_{EE} = –5.2 V \pm 5%, RL = 50 Ω

Parameter	Symbol	Min.	Typical	Max.	Unit
Input Data amplitude (DataIn)	VDAT	300	500	1000	mV _{P-P}
Input Data, VIH level	DataIn	-0.2	0.0	+0.5	V
Input Data, VIL level	DataIn	-1.2	-0.9	-0.5	V
Input Clock amplitude (ClkIn)	VCLK	300	500	1000	mV _{P-P}
Input Data duty cycle	tDAToc	80	100	120	%
Input CLK duty cycle	tCLKoc	40	50	60	%
Input Data rise/fall	tDATr, tDATf	_	-	50	ps
Input CLK rise/fall	tCLKr, tCLKf	_	-	40	ps
DataIn return loss (DC-3GHz)	S11data	_	-20	-	dB
DataIn return loss (3-10GHz)	S11data	-	-	-10	dB
ClkIn return loss (1-12GHz)	S11Clk	-	-10	-	dB
Bias current output	IB	1	-	120	mA
Peak output current	IPOut	40 (1)	100	110	mA
Ratio of IPOutP/N to IPMonP/N ((IPOutP/N) ÷ (IPMonP/N))	IPOut/IPMon	-	20.00	-	-
Maximum output swing (peak-to-peak with Bias-Tee to + 1.0 V)	Vout	4.5	5.0	6.0	V _{P-P}
Maximum output swing (peak-to-peak without Bias-Tee)	Vout	-	3.0	-	V p-p
Output duty cycle range (retimed)		-	±20	-	%
Output rise/fall time	tlPr, tlPf	-	35	40	ps
Jitter added ⁽²⁾ (retimed)	Jrms	-	2	3	ps RMS
Change in delay over temperature			1		ps/deg. C
LOS VL (no transitions on DataIn/ClkIn)		-0.2	0.0	-	V
LOS V _H (DataIn/ClkIn transitioning)		-1.5	-0.9	-0.5	V
T _{Activation} (no transitions on DataIn/ClkIn)		1.0	-	10	μs
T _{Release} (DataIn / ClkIn transitioning)		1.0	-	10	μs
Power consumption (Vout s-e equals 5.0 V P-P, no Ibias)	P _{max}		1.8	-	W
Power consumption (quiescent)	Pq	-	1.2	1.3	W
NOTE 1. Output current can be lower, however eye quality degrades NOTE 2. Valid only at $V_{EE} = -5.2$ V with Clock and Data = 500 mV p	s at low current valu ₋-P (± 150 mV.)	es.			

Table 4. CX60087 Absolute Maximum Ratings

Exceeding the CX60087 absolute maximum ratings listed in Table 4 will damage the unit.

Parameter	Symbol	Min.	Max.	Unit
Supply Voltage	V _{EE}	-7.0	+0.5	V
Input Voltage	Vin	Vee -0.5	+0.5	V
IP Maximum Current	Ipmax	-	180	mA
IB Maximum Current	Ibmax	-	200	
Storage Temperature	Tst	-65	+150	°C
Electrostatic Discharge (Human Body Model)	ESD	-	>2000	V
High-speed Terminals			≥100	

Table 5. CX60087 Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit
Vee Supply Voltage	V _{EE}	-4.68	-5.20	-5.72	V
Operating Case Temperature	Tc ⁽¹⁾	0.0	-	+85	°C
Junction Temperature	Tj ⁽¹⁾	0.0	-	+125	°C
Relative Humidity		5	-	95	%
Note 1: See Figure 7 for temperature measurement locations.					

Figure 7. Temperature Measurement Locations

Waveform Evaluation

Figure 8 illustrates the CX60087 in an equivalent load circuit for waveform evaluation.

Figure 8. CX60087 Equivalent Load Circuit for Waveform Evaluation

Component List
R1 = 50 Ω
R2 = 50 Ω
R3 = 180Ω
R4 = 180Ω
R5 = $2k\Omega$
C1 = 0.12µ F
$C2 = 0.12 \mu F$
C3 = 15 nF
C4 = 10 nF
L1 = 330µ H
L2 = 330µH

NDSPEED BUILD IT FIRST

Figures 9. CX60087 Eye Diagrams (Directly Measured No Sonet Filters with Bias-Tee connected to +1 Volt)

With Re-timing.

CX60087 Eye Diagrams (Unfiltered, without Bias-Tee)

The three following eye diagram show CX60087 operation under unfiltered test conditions while directly driving a 50 Ω Load.

Figure 10a. Output eye for CX60087 Maximum Signal Swing with 10Gbps Ethernet Eye Mask, without a Bias-Tee.

Figure 10b. CX60087 Output eye for Minimum Signal Swing with 10 Gbps Ethernet Eye Mask, without a Bias-Tee

Figure 10c. CX60087 Output eye for Optimum Signal Swing with 10 Gbps Ethernet Eye Mask, without a Bias-Tee

Driver Configuration

MNDSPEED

Figure 11 illustrates the CX60087 configured as single-ended LiNO3 driver.

Figure 11. CX60087 Single-Ended Mode LiNO₃ Modulator Driver Application

Figure 12 illustrates the CX60087 configured as differential-mode LiNO3 driver.

Figure 12. CX60087 Differential-Mode LiNO₃ Modulator Driver Application

Application Notes for EML and DML applications.

The CX60087 can also be used for EML or DML applications, however it is important to note that for optimum eye opening and performance the following limitations exist:

When driving a 50 ohm load directly, as in the case of EML (Externally modulated laser) or DML (direct modulated laser) the CX60087 exhibits a range of linear operation spanning 80% to 100% of the maximum voltage swing realized. In order to optimize performace for lower signal swings, it is necessary to use an external 50 ohm attenuator network, in order to drop the signal swing to match the application. When used with a Bias-Tee, the linear range of adjustability spans approximatly 60% to 100% of the maximum. This level of adjustment is generally sufficient for EA modulators and cooled DML applications.

Package Pins Assignments

The CX60087 package terminal assignments are listed in Table 6 and illustrated in Figure 13.

Table 6. CX60087 Package Terminal Assignments

Package Terminal Number	Signal Name	Package Terminal Number	Signal Name
1	IB	16	ClkCap
2	IBCntl	17	DutyCntl
3	IBMon	18	Vee
4	Vee	19	IPCntl
5	PolCntl	20	IPMonP
6	LOS	21	IPMonN
7	RetimDisable	22	Gnd
8	DataCap	23	VeeO
9	Vee	24	GndO
10	Gnd	25	IPOutN
11	DataIn	26	GndO
12	Gnd	27	IPOutP
13	ClkIn	28	GndO
14	Gnd	29	VeeO
15	Vee	30	GndO

Package Dimensions

Figure 13 illustrates CX60087 package dimensions in millimeters.

Figure 13 CX60087 Package Dimensions

PACKAGE DIMENSIONS				
LETTER	DIAMENSION	TOLERANCE		
A	2.44	MAX.		
В	6.22	±.20		
С	5.33	±.20		
D	9.50 SQ.	±.20		
E	13.90 SQ.	±.20		
F	0.30	±.20		
G	0.89	±.20		
Н	0.10	±.20		
J	9.12	±.025		
K	2.20	±.20		
R	1.19	±.20		

Ordering Information

Name	Number	Package Data
10 Gbs Lithium Niobate Modulator Driver	CX60087- (TBD)	30 Pin flat pack.

Revision History

Revision	Date	Comments
CX60087	4/19/00	Original issue.
CX60087v1a	5/8/00	Internal review copy, not for release. Requires update to CX60087 design specifications.
CX60087v1b	6/21/00	Internal review copy, not for release. Added review comments.
CX60087v1c	7/26/00	Internal review copy, not for release. Added review comments. Added illustration of output response eye displays. Removed laser modulator references and EML driver system block diagrams. Added single-ended mode and differential mode Lithium Niobate modulator driver SBD illustrations.
CX60087v1d	7/28/00	Internal review copy, not for release. Reviewed specifications, text, and figures.
CX60087v1e	8/2/00	Added review corrections and additions.
CX60087v1f	8/10/00	Internal review copy, not for release. Added new data to features and applications.
CX60087v1g	9/22/00	Internal review copy, not for release. Added review data
CX60087v1h	9/28/00	Internal review copy, not for release. Added review data
CX60087v2	3/8/01	Front page features and application data edits
CX60087v2a	5/8/01	Added note on jitter specification, and temperature dependent crossover shift in during retiming tests
CX60087v3	5/18/01	Modified Figure 3, Figure 4, and Figure 5. Table 3 values modified, added note on delay increase over temperature.

© 2001 Mindspeed Technologies TM, a Conexant business.

All Rights Reserved.

Information in this document is provided in connection with Mindspeed Technologies ("Mindspeed") products. These materials are provided by Mindspeed as a service to its customers and may be used for informational purposes only. Mindspeed assumes no responsibility for errors or omissions in these materials. Mindspeed may make changes to specifications and product descriptions at any time, without notice. Mindspeed makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Mindspeed's Terms and Conditions of Sale for such products, Mindspeed assumes no liability whatsoever.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MINDSPEED PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MINDSPEED FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MINDSPEED SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

Mindspeed products are not intended for use in medical, lifesaving or life sustaining applications. Mindspeed customers using or selling Mindspeed products for use in such applications do so at their own risk and agree to fully indemnify Mindspeed for any damages resulting from such improper use or sale.

The following are trademarks of Conexant Systems, Inc.: Mindspeed Technologies[™], the Mindspeed logo, and "Build It First"[™]. Product names or services listed in this publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and names are the property of their respective owners.

For additional disclaimer information, please consult Mindspeed Technologies Legal Information posted at <u>http://www.mindspeed.com/</u>, which is incorporated by reference.

Μ

Further Information:

literature@mindspeed.com (800) 854-8099 (North America)

(949) 483-6996 (International) World Headquarters Conexant Systems, Inc. 4311 Jamboree Road Newport Beach, CA 92660-3007 Phone: (949) 483-4600 Fax 1: (949) 483-4600 Fax 2: (949) 483-4391

Americas

U.S. Northwest/ Pacific Northwest - Santa Clara Phone: (408) 551-0270 Fax: (408) 249-7113 U.S. Southwest - Los Angeles Phone: (805) 480-4169 Fax: (805) 480-4486 U.S. Southwest - Orange County Phone: (949) 483-9119 Fax: (949) 483-9090 U.S. Southwest - San Diego Phone: (858) 713-4730 Fax: (858) 713-4008 U.S. North Central - Illinois Phone: (630) 773-3454 Fax: (630) 773-3907 U.S. South Central – Texas Phone: (972) 733-0723 Fax: (972) 407-0639 U.S. Northeast - Massachusetts Phone: (978) 367-3200 Fax: (978) 256-6868 U.S. Southeast - North Carolina Phone: (919) 858-9110 Fax: (919) 858-8669 U.S. Southeast -Florida & South America Phone: (727) 799-8406 Fax: (727) 799-8306 U.S. Mid-Atlantic - Pennsylvania Phone: (215) 244-6784 Fax: (215) 244-9292 Canada – Ontario Phone: (613) 271-2358 Fax: (613) 271-2359

Europe

Europe Central – Germany Phone: +49 89 829-1320 Fax: +49 89 834-2734

Europe North – England, Middle East, Africa Sales Phone: +44 (0)118 920 9500 Fax: +44 (0)118 920 9595 Europe – Israel/Greece Phone: +972-9-961-5100 Fax: +972-9-961-5166

Europe South – France Phone: +33 (0)1 56 30 80 40 Fax: +33 (0)1 56 30 80 20

Europe Mediterranean – Italy Phone: +39 02 93179911 Fax: +39 02 93179913

Europe – Sweden Phone: +46 (0) 8 5091 4319 Fax: +46 (0) 8 590 041 10

Europe – Finland Phone: +358 (0) 9 85 666 435 Fax: +358 (0) 9 85 666 220

Asia – Pacific Taiwan Phone: (886-2) 2-720-0282 Fax: (886-2) 2-757-6760 Australia Phone: (61-3) 9583 2650 Fax: (61-3) 9583 9453 China - Central Phone: 86-21-6361-2515 Fax: 86-21-6361-2516 China - South Phone: (852) 2 827-0181 Fax: (852) 2 827-6488 China - South (Satellite) Phone: (86) 755-5182495 Fax: (86) 755-5183024 China – North Phone: (86-10) 8529-9777 Fax: (86-10) 8529-9778

India - North Phone: (91-11) 341-2216 Fax: (91-11) 341-2217

India - South Phone: (91-80) 227-3130 Fax: (91-80) 227-3129

Korea Phone: (82-2) 565-2880 Fax: (82-2) 565-1440

Korea (Satellite) Phone: (82-53) 745-2880 Fax: (82-53) 745-1440

Singapore

Phone: (65) 737 7355 Fax: (65) 737 9077

Japan

Phone: (81-3) 5371 1520 Fax: (81-3) 5371 1501

http://www.mindspeed.com/