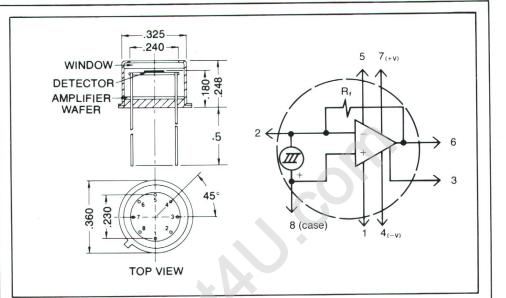


Features


- Rugged LiTaO₃ material
- 610°C Curie temperature
- 0.2%/°C temperature stability
- Non-hygroscopic
- Broad spectral range .001 to 1000 microns
- Low noise
- 0°C to +70°C operation
- Optional windows
- High performance operational amplifier
- Flat bandwidth to 3 MHz

Applications

- Laser power and energy measurement
- Non-contact temperature measurement
- Security and surveillance systems
- Process control
- X-ray calorimetry
- Gas analyzer instrumentation
- Solar instrumentation

The P1-30 series features 1, 2, 3, and 5 mm diameter pyroelectric elements with high-performance, wideband hybrid operational amplifiers packaged together in TO-5 transistor cases. With standard internal 10⁸-ohm feedback resistors they deliver high responsivity with 8 kHz flat bandwidth. The internal feedback resistor may be paralleled externally with lower resistances to 10⁵ ohms to achieve wider uniform frequency response out to upper-3dB frequencies as high as 3 MHz. Power supply noise rejection is typically -70 dB when operated from an external ± 15 Vdc source.

PI-30 Low Noise, Broadband Pyroelectric Detector/Op-Amp

Performance Specifications P1-30

	CTERISTICS (25°C otherwise noted)	Min	P1-3 Typ	31 Max	Min	Р1-3 Тур	82 Max	Min	Р1-3 Тур	3 Max	Min	Р1-3 Тур		UNIT	CONDITIONS
ELEMEN Dia	IT ONLY Active Diameter		1			2			3			5		mm	
Ri	Current Responsivity	.5	1		.25	.5		.25	.5		.13	.25		μA/Watt	$\begin{array}{l} \lambda = 632.8 \text{ nm} \\ \text{f} \geq 15 \text{ Hz} \end{array}$
C₀	Element Capacitance		15			24			54			75		pF	f = 1 kHz
fт	Thermal 3db Frequency		3.5	6		1.6	3		.8	2		.5	1	Hz	$P_{Avg} \leq 10 \text{ mW}$
ELEMEN	T AND OP AMP														
R _v	Voltage Responsivity (See Figures 1-4)	50	100		25	50		25	50		13	25		Volts/Watt	$\begin{array}{l} \lambda = 632.8 \text{ nm}, \\ \text{f} = 1 \text{ kHz} \end{array}$
NEP	Noise Equivalent Power (See Figures 1-4)		200	400		400	800		400	800		800	1000	10 ⁻⁹ W/ Hz½	$\begin{array}{l} \lambda = 632.8 \text{ nm}, \\ f = 1 \text{ kHz}, \\ BW = 1 \text{Hz} \end{array}$
D*	Detectivity	2.2	4.4		2.2	4.4		3.3	6.7		2.8	5.5		10 ⁵ cm Hz½/Watt	$\begin{array}{l} \lambda = 632.8 \text{ nm}, \\ \text{f=1 kHz}, \\ \text{BW=1Hz} \end{array}$
fn	Flat Frequency Response	ЗМ			ЗМ			ЗМ			3M			Hz	External Feedback Resistor
Rs	Internal Feedback Resistor		1			1			1			1		10 ⁸ Ohm	
C,	Internal Stray Feedback Capacitance		0.2	1.0		0.2	1.0		0.2	1.0		0.2	1.0	pF	Ŋ.
Ro	Output Impedance		100			100			100			100		Ohms	
PMax Avg	Maximum Average Power			50			50			50			50	m Watts	
Vcc	Supply Voltage		±15			±15			±15			±15	2	Volts	
Icc	DC Bias Current		3	4		3	4		3	4	9	3	4	mA	

Note: 1. R_µ, R_µ, NEP and D* are specified at 632.8nm with windowless detector. These parameters improve 30% at 10.6μm.

2. If CC Black Absorbing Coating is specified R_{μ} , R_{ν} , NEP and D* can improve by 20 to 40% at all wavelengths. However, this coating limits their use to frequencies <100 Hz.

DETECTOR, INCORPORATED 7470 S.W. Bridgeport Road Portland, OR 97224 (503) 620-9069 (800) 366-4340 Fax (503) 620-8964 sales@molectron.com

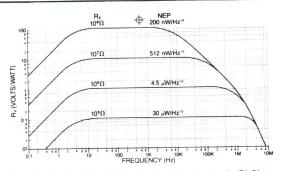


Fig. 1 Plot of typical Responsivity R_v versus Frequency for P1-31 Pyroelectric Detectors with various external feedback resistors.

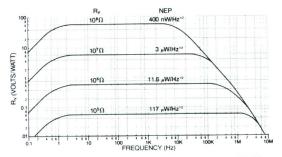


Fig. 3 Plot of typical Responsivity R_{ν} versus Frequency for P1-33 Pyroelectric Detectors with various external feedback resistors.

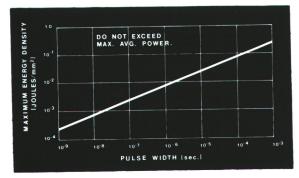


Fig. 5 Relative spectral response vs wavelength

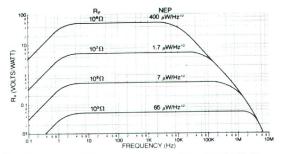


Fig. 2 Plot of typical Responsivity R_{ν} versus Frequency for P1-32 Pyroelectric Detectors with various external feedback resistors.

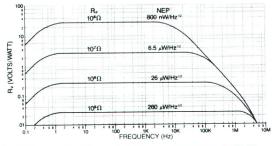
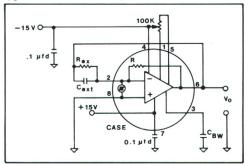



Fig. 4 Plot of typical Responsivity R_v versus Frequency for P1-35 Pyroelectric Detectors with various external feedback resistors.

Typical Circuit Diagram

Notes: 1. All grounds as short as possible

- 1. All grounds as short as possible. 2. Offset adjust optional for $R_{i(total)} \leq 10^9$ ohms. 3. $R_i(EXT)$ is an optional external resistor used to achieve wider flat bandwidth with lower voltage responsivity.

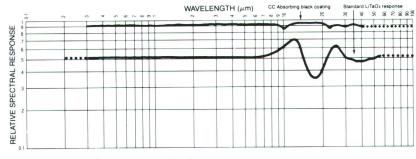


Fig. 6 Relative spectral response vs wavelength

2M/7-96/BT