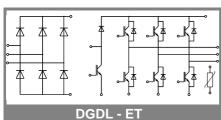


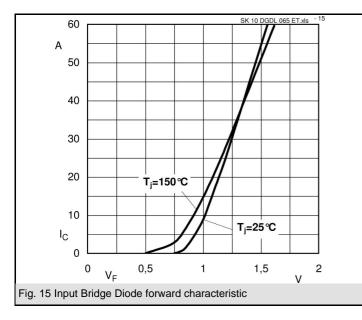
SEMITOP[®] 3

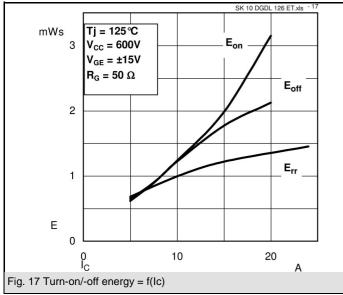
3-phase bridge rectifier + brake chopper +3-phase bridge inverter SK 10 DGDL 126 ET

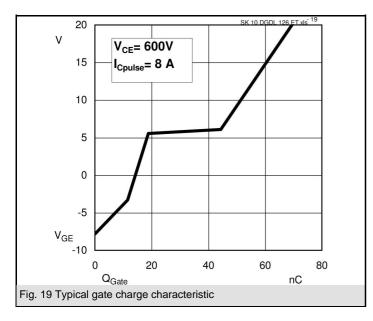
Preliminary Data

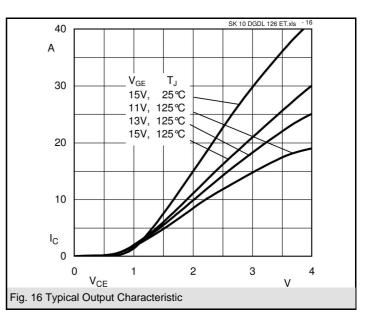
Features

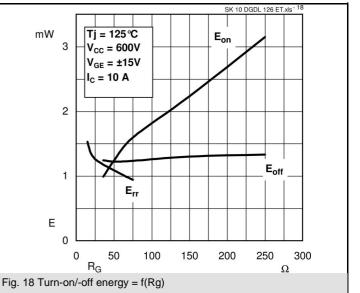

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded alumium oxide ceramic (DCB)
- Trench technology IGBT
- CAL High Density FWD
- Integrated NTC temperature sensor

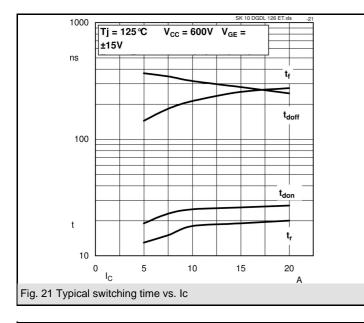

Typical Applications*

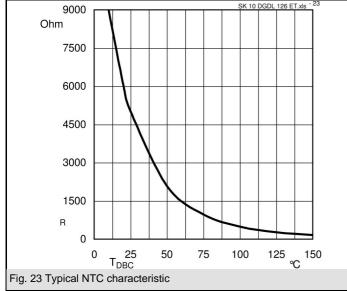

Inverter

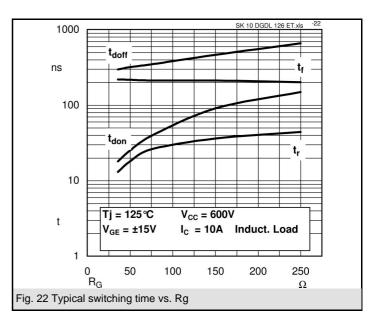

Absolute Maximum Ratings		T_s = 25°C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT - Inverter, Chopper							
V _{CES}		1200	V				
I _C	T _s = 25 (80) °C	15 (11)	А				
ICRM	$I_{CRM} = 2 \times I_{Cnom}, t_p = 1 \text{ ms}$	16	А				
V _{GES}		±20	V				
Т _ј		-40 +150	°C				
Diode - Inverter, Chopper							
I _F	T _s = 25 (80) °C	25 (17)	А				
I _{FRM}	I _{FRM} = 2xI _{Fnom} , t _p = 1 ms	50	А				
T _j		-40 +150	°C				
Rectifier							
V _{RRM}		1600	V				
I _F	T _s = 80 °C	21	А				
I _{FSM} / I _{TSM}	t _p = 10 ms , sin 180 ° ,T _j = 25 °C	220	А				
I ² t	t _p = 10 ms , sin 180 ° ,T _j = 25 °C	240	A²s				
Т _ј		-40 +150	°C				
T _{sol}	Terminals, 10s	260	°C				
T _{stg}		-40 +125	°C				
V _{isol}	AC, 1 min. / 1s	2500 / 3000	V				

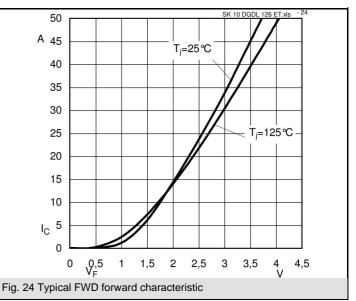

Character	ristics	T _s = 25°C	T_s = 25°C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inverter, Chopper								
V _{CEsat} V _{GE(th)} V _{CE(TO)}	$I_{C} = 8 \text{ A}, T_{j} = 25 (125) ^{\circ}\text{C}$ $V_{GE} = V_{CE}, I_{C} = 0,3 \text{ mA}$ $T_{j} = 25 ^{\circ}\text{C} (125) ^{\circ}\text{C}$ $T_{i} = 25 ^{\circ}\text{C} (125) ^{\circ}\text{C}$	5	1,7 (2) 5,8 1 (0,9) 87 (138)	2,1 (2,4) 6,5 1,2 (1,1) 113 (162)	V V V mΩ			
r _T C _{ies} C _{oes} C _{res} R _{th(j-s)}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$ $V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$ $V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$ $V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$ per IGBT		0,7 0,2 0,1	2	nF nF nF K/W			
$egin{array}{l} t_{d(on)} \ t_r \ t_{d(off)} \ t_f \ E_{on} \end{array}$	under following conditions $V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$ $I_C = 8 \text{ A}, T_j = 125 ^{\circ}\text{C}$ $R_{Gon} = R_{Goff} = 75 \Omega$ inductive load		85 30 430 90 1		ns ns ns ns mJ			
E _{off}			1		mJ			
$V_F = V_{EC}$ $V_{(TO)}$ r_T $R_{th(j-s)}$	Verter, Chopper $I_F = 8 A, T_j = 25(125) °C$ $T_j = 25 °C (125) °C$ $T_j = 25 °C (125) °C$ per diode under following conditions		1,9 (2) 1 (0,8) 40 (53)	2,2 1,1 (0,9) 47 2,1	V V mΩ K/W			
I _{RRM} Q _{rr} E _{rr}	$I_F = 15 \text{ A}, V_R = 600 \text{ V}$ $V_{GE} = 0 \text{ V}, T_j = 125 \text{ °C}$ $di_{F/dt} = 570 \text{ A}/\mu\text{s}$		3,5 1,4		μC mJ			
Diode rec V_F $V_{(TO)}$ r_T	t ifier I _F = 15 A, T _j = 25() °C T _j = 150 °C T _j = 150 °C		1,1 0,8 20		V V mΩ			
R _{th(j-s)}	per diode			2,7	K/W			
Temperatur sensor								
R _{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω			
Mechanical data								
w M _s	Mounting torque		30	2,5	g Nm			

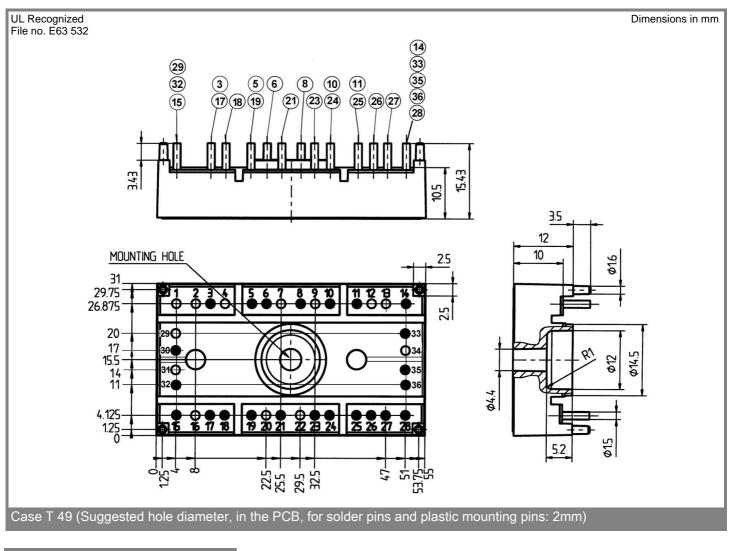


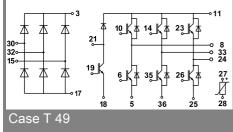












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.