

# PCM AMI Line Receiver and Clock Recovery Circuit

#### GENERAL DESCRIPTION

The XR-T5740 is a monolithic bipolar IC designed for T1 line receiver application operating at 1.544 M bit/s. It provides all the active circuitry required to perform automatic line build out (ALBO), threshold detection, binary NRZ data and clock recovery as the XR-T5640 but with a crystal filter instead of a LC tank circuit.

A clock recovery using an LC filter circuit version of the XR-T5740 is also available as the XR-T5640

## **FEATURES**

Clock Recovery using Crystal Filter
On-chip NRZ Data and Clock Recovery Circuitry
Less than 10 ns Sampling Pulse Over the Operating
Range
Triple Matched ALBO Ports
Single 5.1 V Power Supply

## **APPLICATIONS**

T1 PCM Line Receiver T1C PCM Line Receiver (requires external gain) General Purpose Bipolar Line Receiver

#### ABSOLUTE MAXIMUM RATINGS

| Storage Temperature -                | -65°C to +150°C  |
|--------------------------------------|------------------|
| Operating Temperature                | -40°C to +85°C   |
| Supply Voltage                       | -0.5  to  + 10 V |
| Supply Voltage Surge (10 ms only)    | + 25V            |
| Input Voltage (except Pins 2,3,4,17) | -0.5 to $+7$ V   |
| Input Voltage (Pins 2,3,4,17)        | -0.5 to $+0.5$ V |
| Data and Clock Output Voltage        | - 0.5 to 20V     |
| Voltage Sure (Pins 5,6,10,11) (10 ms | only) $+50V$     |

# ORDERING INFORMATION

| Part Number | Package | Operating Temperature |
|-------------|---------|-----------------------|
| XR-T5740    | Ceramic | -40°C to +85°C        |

## **FUNCTIONAL BLOCK DIAGRAM**



#### SYSTEM DESCRIPTION

The XR-T5740 is designed as a receiver for interfacing T1 PCM carrier lines on plastic or pulp insulated cables. It can also be used as a general purpose alternate mark inversion (AMI) receiver.

The XR-T5740 is a modified version of XR-T5720 PCM repeater IC. It contains all the active circuitry needed to build a T1 receiver for interfacing up to 6300 ft. The preamplifier, the clock amplifier, threshold detectors, ALBO port, data latches and output drivers are similar to the ones on XR-T5720. Clock extraction is done by means of a crystal filter circuit.

Bipolar +1 and -1 pulses are combined within the IC to form a binary non-return to zero PCM signal at Pin 10. A synchronous clock signal is made available at Pin 11. Both outputs have open collector transistors.



# **ELECTRICAL CHARACTERISTICS**

Tast Canditions: TA = 25°C Voc = 5.1 V + 5%

|   | 1851 Conditions. 1A = 25 C, V(C) = 5.1 V ± 5 76                           |     |                | 1,54,567         |       |                                                |
|---|---------------------------------------------------------------------------|-----|----------------|------------------|-------|------------------------------------------------|
| - | PARAMETERS                                                                | MIN | TYP            | MAX              | UNIT  | CONDITIONS                                     |
|   | Supply Current Clock & Data Output Leakage Current Amplifier Pin Voltages | 2.4 | 22<br>0<br>2.9 | 30<br>100<br>3.4 | mA >> | ALBO Off<br>Vpull-up = 15V<br>At Unity DC Gain |

| FANAMEIENS                          | MILITA   | 111      | INAA | 01111 | OUNDITIONS                                    |
|-------------------------------------|----------|----------|------|-------|-----------------------------------------------|
| Supply Current                      |          | 22       | 30   | mA    | ALBO Off                                      |
| Clock & Data Output Leakage Current |          | 0        | 100  | μА    | $V_{pull-up} = 15V$                           |
| Amplifier Pin Voltages              | 2.4      | 2.9      | 3.4  | 'v    | At Unity DC Gain                              |
| Amplifier Output Voltage Swing      | 2.2      | 1        |      | l v i |                                               |
| Amplifier Output Offset Voltage     | - 50     | 0        | 50   | m۷    | $R_8 = 8.2 \text{ k}\Omega$                   |
| Amplifier Input Bias Current        |          |          | 5    | μА    |                                               |
| ALBO on Current                     | 3        | l        | •    | mA    |                                               |
| Drive Current                       | "        | 1 1      | 1    | mA    |                                               |
|                                     | 1        | L        | L    | 1     |                                               |
| AC CHARACTERISTICS                  |          |          |      |       |                                               |
| Pre-Amplifier                       |          |          |      | '     | •                                             |
| AC Gain at 1 MHz                    |          | 50       |      | dB    | Open Loop                                     |
| Input Impedance                     | 20       | l        |      | kΩ    |                                               |
| Output Impedance                    | 1        | 1        | 200  | Ω     |                                               |
| Clock Amplifier                     |          |          |      |       |                                               |
| AC Gain                             | 1        | 32       |      | dB    | Open Loop                                     |
| - 3 dB Bandwidth                    | 10       | 1        | 1    | MHz   |                                               |
| Delay                               |          | 10       |      | ns    |                                               |
| Output Impedance                    |          |          | 200  | Ω     |                                               |
| ALBO                                |          |          |      |       |                                               |
| Off Inpedance                       | 20       |          |      | kΩ    |                                               |
| On Impedance                        |          |          | 25   | Ω     |                                               |
| CLOCK DATA OUTPUT BUFFERS           |          |          |      |       | $R_L = 130\Omega, V_{pull-up} = 5.1V \pm 5\%$ |
| Rise Time                           | T        | 30       |      | ns    |                                               |
| Fall Time                           |          | 30       | ļ    | ns    |                                               |
| Output Pulse Width                  | 1        | 244      |      | ns    |                                               |
| Sample Pulse Width                  | 1        | 10       | 1    | ns    |                                               |
| VOL                                 | i        | 0.7      |      | V     |                                               |
| IL sink                             |          | 35       | İ    | mA    |                                               |
| THRESHOLDS                          | <u> </u> | <u> </u> |      |       |                                               |
| ALBO                                | 1.4      | 1.5      | 1.6  | V     |                                               |
| Clock Drive Current Peak            |          | 1.0      |      | mA    | At $V_0 = V_{ALBO}$ Threshold                 |
| Clock Thresholds                    | 1        |          |      |       | 1 3                                           |
| % of ALBO                           | 63       |          | 75   | %     |                                               |
| Data Threshold                      |          |          |      |       |                                               |
| % of ALBO                           | 40       | 46       | 52   | %     |                                               |
| 7001 ALBO                           | 1 70     | 1 70     | ı    | 1 '*  | L                                             |