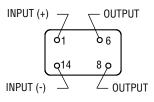
Electronics

Product Facts

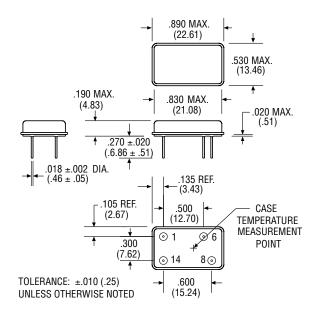
- Qualified to Mil-R-28750C (Mil p/n M28750/9-001Y).
- Optically coupled all solid state relay.
- **■** TTL compatible input.
- Zero voltage turn-on for low FMI
- Hermetically sealed low profile metal DIP package.

AC solid state relay for loads up to 1A @ 250Vrms (2A with heatsink)


This PC board mountable solid state relay is designed for low power AC load switching up to 1 amp at 250Vrms (2 amps with heatsink). The circuit employs back-to-back photo SCRs with zero

voltage turn-on for reliable switching of resistive or reactive loads. TTL compatible input circuitry is optically isolated to 1,500Vrms from the AC load circuit. The relay is offered in two versions: the MIL qualified JDS9-1Y with "Y" level screening per Mil-R-28750C and the DS9-1W tested per Tyco Electronics specifications for CII relays, equivalent to former "W" level screening.

CII Part Number	Military Part Number	Screening Level
JDS9-1Y	M28750/9-001Y	Υ
DS9-1W	N/A	W


Circuit Diagram

Terminal View

TERMINAL NUMBERS SHOWN ABOVE ARE FOR REFERENCE ONLY

Outline Drawing

© 2004 by Tyco Electronics Corporation. All Rights Reserved. CII and TYCO are trademarks.

www.tycoelectronics.com

Electronics

AC solid state relay for loads up to 1A @ 250Vrms (2A with heatsink) (Continued)

Environmental Characteristics

Ambient Temperature Range: Operating: -55°C to +110°C. Storage: -55°C to +125°C.

Vibration Resistance: 20 G's, 10-2,000 Hz.

Shock Resistance:

1,500 G's, 0.5 ms pulse.

Acceleration Resistance (Y axis):

5,000 G's.

Mechanical Characteristics

Weight (typical): .176 oz. (5 grams)

Header: Kovar

Pins: Kovar, gold plated

Cover: Nickel.

Electrical Specifications (-55°C to +105°C unless otherwise specified)

Input		
Input supply voltage range (Vcc)	3.8 - 32 Vdc	
Input current (max.) @ 5Vdc	15mAdc	
Must turn-on voltage	3.8Vdc	
Must turn-off voltage	1.5Vdc	
Reverse voltage protection	-32Vdc	
1/0		
Dielectric strength (min.)	1,500V rms/60 Hz.	
Insulation resistance (min.) @ 500VDC	10 ⁹ ohms	
Capacitance (max.)	10pF	
Output		
Output current rating (max.)	2A rms (Fig. 2, Note 1)	
Surge current, 16ms @ 25°C (max.)	8A pk (Fig. 1, Note 3)	
Continuous load voltage (max.)	250V rms	
Transient blocking voltage (max.)	500V pk	
Frequency range	40 - 440 Hz.	
Output voltage drop (max.) @ 1A load current	1.5V rms	
Off-state leakage current (max.) @ 250V rms/400 Hz.	1mA rms	
Turn-on time (max.)	1/2 cycle	
Turn-off time (max.)	1 cycle	
Off-state dv/dt (min.), with snubber	200V /µs (Note 2)	
Zero voltage turn-on window, initial (max.)	10V	
Waveform distortion (max.)	4V rms	
Output chip junction temperature (max.)	130°C	
Thermal resistance (max.), junction to ambient	65°C/W	
Thermal resistance (max.), junction to case	15°C/W	

Notes

- 1. Operation at elevated load currents up to 2 amps is dependent on use of suitable heatsink to maintain case temperature per Fig. 2.
- 2. Recommended output snubber: R = 100 ohms (1/2 W), $C = .01 \mu F$ (600V).
- 3. Heating of output chip during and after a surge may cause loss of output blocking capability until junction temperature falls below maximum rating.

Figure 1 - Peak Surge Current vs. Surge Current Duration

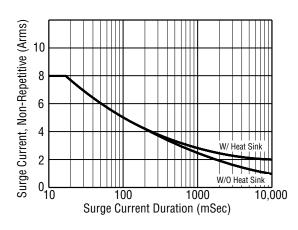
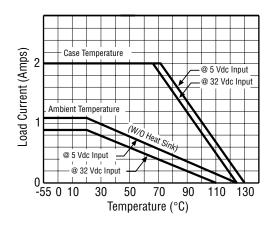



Figure 2 - Load Current vs. Temperature

DS9-TBD-PDF-KRG-1-04