

FEATURES

- Ranges 0...±25 and 0...±1000 sccm¹
- · Bidirectional sensing
- · Actual mass flow sensing
- · Ceramic flow tube
- Manifold mount/O-ring sealed
- · Sensortechnics PRO services

To be used with dry gases only. The FMOM025HB is a special sensor for hydrogen (H_2) flow.

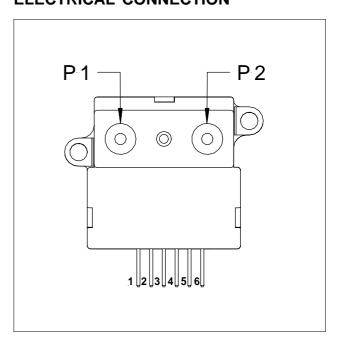
The FMO series is NOT designed for liquid flow and will be damaged by liquid flow through the sensor.

SPECIFICATIONS

Maximum ratings

Supply voltage² 8 to 15 V

typ. 10 ±0.01 V


Power consumption max. 60 mW

Temperature limits

Operating -40 to 125°C Storage -40 to 125°C

Mechanical shock 100 g (5 drops, 6 axes)

ELECTRICAL CONNECTION

Note

E / 11723 / A 1/6

¹ sccm denotes standard cubic centimeters per minute

² Output voltage is ratiometric to supply voltage

FLOW SENSOR CHARACTERISTICS³

 $(V_s = 10 \pm 0.01 \text{ V}, T_A = 25^{\circ}\text{C})$

Part no.	Flow range (full scale)	Max. flow change⁴	Output voltage @ trim point
FMOM025HB	±25 sccm	5.0 l/sec	8.5 ±1.5 mV @ 25 sccm
FMOL001DB	±1000 sccm	5.0 l/sec	54.7 ±3.7 mV @ 1000 sccm

PERFORMANCE CHARACTERISTICS

 $(V_S = 10 \pm 0.01 \text{ V}, T_A = 25^{\circ}\text{C})$

Characteristics			Min.	Тур.	Max.	Unit		
Zero offset			FMOM025HB	-1.0	0	1.0	mV	
			FMOL001DB	-1.5	0	1.5		
Repeatability and hysteresis			FMOM025HB			±0.35	0/ 200 ding	
(combined)			FMOL001DB			±0.50	% reading	
Temperature effects ⁵	Offset	-25 to 85 °C			±0.20		mV	
	Span	-25 to 25 °C			2.5		% reading	
		25 to 85 °C			-2.5			
Response time					1.0	3.0	ms	
Common mode pressure						150	psi	

Notes:

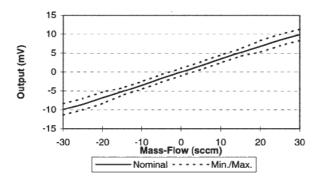
³ A 5 micron filter is recommended for all devices.

⁴ Maximum allowable rate of flow change to prevent damage.

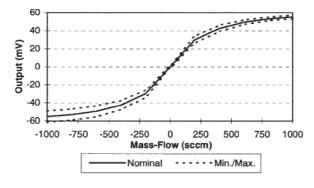
⁵ Shift is relative to 25 °C.

E / 11723 / A 2/6

FLOW SPECIFICATIONS


 $(V_S = 10 \pm 0.01 \text{ V}, T_A = 25^{\circ}\text{C})$

FMOM025HB			FMOL001DB				
Press. (µbar)	Flow (sccm) ⁶	Nom. (mV)	Tol. (± mV)	Press. (mbar)	Flow (sccm) ⁶	Nom. (mV)	Tol. (± mV)
20	30	9.9	1.5	2.23	1000	54.7	2.0
17	25	8.5	1.5	1.52	800	53.0	2.0
14	20	6.8	1.5	0.94	600	49.3	2.5
10	15	5.2	1.0	0.49	400	42.5	3.5
7	10	3.5	1.0	0.19	200	29.8	4.0
3	5	1.7	1.0	0.00	0	0.0	1.5
0	0	0.0	1.0	-0.19	-200	-29.8	4.0
				-0.49	-400	-42.5	5.0
				-0.94	-600	-49.3	6.0
				-1.52	-800	-53.0	6.0
				-2.23	-1000	-55.2	6.0

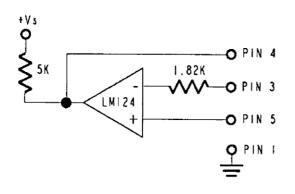

Note:

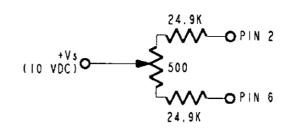
OUTPUT VS. FLOW CURVES

FMOM025HB

FMOL001DB

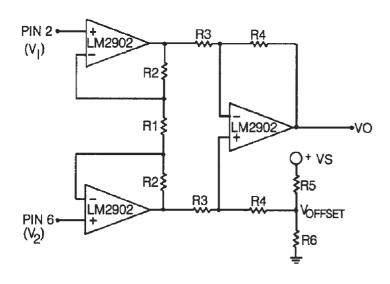
E / 11723 / A 3/6




⁶ Devices are calibrated in mass flow. Tolerance values apply to calibration type only.

HEATER CONTROL CIRCUIT

SENSING BRIDGE SUPPLY CIRCUIT

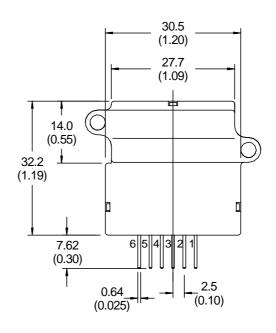


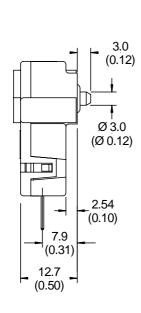
Note:

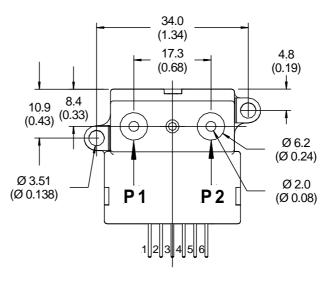
These circuits are required for operation per specifications. Circuits are not on board the sensor.

DIFFERENTIAL INSTRUMENTATION AMPLIFIER CIRCUIT (optional)

$$V_{O} = \left(\frac{2R_{2} + R_{1}}{R_{1}}\right) \left(\frac{R_{4}}{R_{3}}\right) (V_{2} - V_{1}) + V_{Offset}$$


where
$$V_{Offset} = V_S \left(\frac{R_6}{R_6 + R_5} \right)$$


E / 11723 / A 4/6



OUTLINE DRAWING

third angle projection

mass: approx. 14 g dimensions in mm (inches)

Note: Positiv flow direction is defined as proceeding from port 1 (P1) to port 2 (P2) and results in positive output (pin 6 > pin 2). Negative flow direction is defined conversely and results in negative output (pin 6 < pin 2).

E / 11723 / A 5/6

GAS CORRECTION FACTORS7

Gas type	Correction factor (approx.)		
Helium (He)	0.58		
Hydrogen (H ₂)	0.78,9		
Argon (Ar)	0.95		
Nitrogen (N ₂)	1.0		
Oxygen (O ₂)	1.0		
Air	1.0		
Nitric oxide (NO)	1.0		
Carbon monoxide (CO)	1.0		
Methane (CH₄)	1.1		
Ammonia (NH ₃)	1.1		
Nitrous oxide (N ₂ O)	1.35		
Nitrogen dioxide (NO ₂)	1.35		
Carbon dioxide (CO ₂)	1.35		

Notes:

ORDERING INFORMATION - AVAILABLE LISTINGS

Flow range	Dry gas	Hydrogen gas ⁹
±25 sccm	-	FMOM025HB
±1000 sccm	FMOL001DB	-

Sensortechnics PRO services:

- · Extended guarantee period of 2 years
- · Improved performance characteristics
- · Custom product modifications and adaptations even for small quantities
- · Advanced logistics models for supply inventory and short delivery times
- · Technical support through application engineers on the phone or at your site
- · Fastest possible technical response for design and QA engineers
- ... plus other services on request

Sensortechnics reserves the right to make changes to any products herein. Sensortechnics does not assume any liability arising out of the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

E / 11723 / A 6/6

⁷ Gas correction factors are referenced to nitrogen (N₂) as calibration gas type. Approximate gas correction factors are provided as guidelines only. Individual gas types may perform differently at temperature extremes and varying flow rates.

⁸ When sensing Hydrogen (H₂) or Helium (He) it may be necessary to power the mass flow sensor using increased supply voltage: Hydrogen typ. 12 V, Helium typ. 15 V

⁹ Hydrogen (H₂) flow measurement requires the use of a special sensor. These devices provide normal operation when sensing hydrogen flow and are designated with an "H" at the end of the order number.