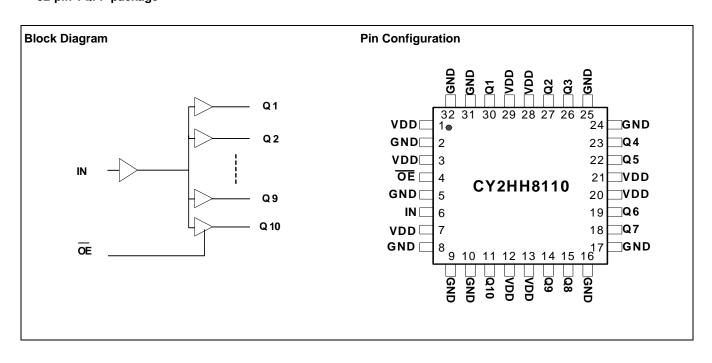


# 1.5V 1:10 HSTL Fanout Buffer

#### **Features**


- DC to 150-MHz operation
- 1.5V power supply
- One single-ended HSTL input
- Ten single-ended Class II HSTL outputs
- Less than 1.9% Duty Cycle distortion
- · Balanced 16-mA output drive
- Output Enable/Disable
- · Low output-output skew
- Operating temperature range: 0°C to +85°C
- 32-pin TQFP package

### Description

The CY2HH8110 is a low-voltage HSTL fanout buffer designed for data communications, clock management, and specialty memory applications.

The class II HSTL outputs are balanced Push-Pull in design capable of delivering 16 mA into 10 pF load. This class allows both source series termination and symmetrically double parallel termination.

The CY2HH8110 low-output duty cycle distortion makes it suitable for Double Data Rate (DDR) applications.





## Pin Description<sup>[1]</sup>

| Pin                                       | Name    | I/O    | Туре   | Description                                                                                                   |
|-------------------------------------------|---------|--------|--------|---------------------------------------------------------------------------------------------------------------|
| 6                                         | IN      | I      | HSTL   | HSTL reference clock input                                                                                    |
| 30, 27, 26, 23, 22, 19, 18, 15, 14, 11    | Q(1:10) | 0      | HSTL   | HSTL clock outputs                                                                                            |
| 4                                         | OE      | I, PD  | LVCMOS | Output enable/disable input. When held LOW, outputs are enabled. When set HIGH, all outputs are disabled LOW. |
| 1, 3, 7, 12, 13, 20, 21, 28, 29           | VDD     | Supply | VDD    | 1.5V power supply <sup>[2]</sup>                                                                              |
| 2, 5, 8, 9, 10, 16, 17, 24,<br>25, 31, 32 | GND     | Supply | Ground | Common ground                                                                                                 |

#### Notes:

PD = Internal pull down.
 A 0.1-uF bypass capacitor should be placed as close as possible to each positive power pin (< 0.2"). If these bypass capacitors are not close to the pins their high frequency filtering characteristics will be cancelled by the lead inductance of the trace.</li>



### **Absolute Maximum Conditions**

| C Supply Voltage C Operating Voltage C Input Voltage C Output Voltage Utput termination Voltage | Functional  Relative to V <sub>SS</sub> , with or V <sub>DD</sub> applied  Relative to V <sub>SS</sub>                                                                                       | -0.5<br>1.35<br>-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.5<br>1.65<br>V <sub>DD</sub> + 0.5<br>V <sub>DD</sub> + 0.5                                                                                                                                                                                                       | V<br>V<br>V                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C Input Voltage C Output Voltage utput termination Voltage                                      | Relative to V <sub>SS</sub> , with or V <sub>DD</sub> applied                                                                                                                                | -0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V <sub>DD</sub> + 0.5                                                                                                                                                                                                                                               | V                                                                                                                                                                                                                                                                                                               |
| C Output Voltage<br>utput termination Voltage                                                   | applied                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                               |
| utput termination Voltage                                                                       | Relative to V <sub>SS</sub>                                                                                                                                                                  | -0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V <sub>DD</sub> + 0.5                                                                                                                                                                                                                                               | V                                                                                                                                                                                                                                                                                                               |
| 1 0                                                                                             |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                 |
| toh I la Immunity                                                                               |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>DD</sub> ÷ 2                                                                                                                                                                                                                                                 | V                                                                                                                                                                                                                                                                                                               |
| tch Up Immunity                                                                                 | Functional                                                                                                                                                                                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                     | mA                                                                                                                                                                                                                                                                                                              |
| wer Supply Ripple                                                                               | Ripple Frequency < 100 kHz                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150                                                                                                                                                                                                                                                                 | mVp-p                                                                                                                                                                                                                                                                                                           |
| mperature, Storage                                                                              | Non-functional                                                                                                                                                                               | -65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +150                                                                                                                                                                                                                                                                | °C                                                                                                                                                                                                                                                                                                              |
| mperature, Operating Ambient                                                                    | Functional                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +85                                                                                                                                                                                                                                                                 | °C                                                                                                                                                                                                                                                                                                              |
| mperature, Junction                                                                             | Functional                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +150                                                                                                                                                                                                                                                                | °C                                                                                                                                                                                                                                                                                                              |
| ssipation, Junction to Case                                                                     | Functional                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42                                                                                                                                                                                                                                                                  | °C/W                                                                                                                                                                                                                                                                                                            |
| ssipation, Junction to Ambient                                                                  | Functional                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105                                                                                                                                                                                                                                                                 | °C/W                                                                                                                                                                                                                                                                                                            |
| SD Protection (Human Body odel)                                                                 |                                                                                                                                                                                              | 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     | V                                                                                                                                                                                                                                                                                                               |
| ilure in Time                                                                                   | Manufacturing test                                                                                                                                                                           | 10 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                 |
| rrr                                                                                             | wer Supply Ripple mperature, Storage mperature, Operating Ambient mperature, Junction sipation, Junction to Case sipation, Junction to Ambient D Protection (Human Body adel) illure in Time | wer Supply Ripple  mperature, Storage  mperature, Operating Ambient  mperature, Junction  sipation, Junction to Case sipation, Junction to Ambient  D Protection (Human Body adel)  functional  functional | wer Supply Ripple Ripple Frequency < 100 kHz mperature, Storage Non-functional -65 mperature, Operating Ambient Functional 0 mperature, Junction Functional esipation, Junction to Case Functional D Protection (Human Body adel) filure in Time Manufacturing test | wer Supply Ripple Ripple Frequency < 100 kHz 150  mperature, Storage Non-functional -65 +150  mperature, Operating Ambient Functional 0 +85  mperature, Junction Functional +150  ssipation, Junction to Case Functional 42  ssipation, Junction to Ambient Functional 105  D Protection (Human Body idel) 1600 |

## DC Electrical Specifications (V<sub>DD</sub> = 1.5V $\pm$ 8%, T<sub>A</sub> = 0°C to +85°C)

| Parameter        | Description                         | Condition                              | Min.                  | Тур. | Max.                  | Unit |
|------------------|-------------------------------------|----------------------------------------|-----------------------|------|-----------------------|------|
| V <sub>IL</sub>  | Input Voltage, Low                  | HSTL input, V <sub>REF</sub> = 0.75V   | -0.30                 | -    | 0.65                  | V    |
| V <sub>IH</sub>  | Input Voltage, High                 |                                        | 0.85                  | -    | 1.80                  | V    |
| V <sub>IL</sub>  | Input Voltage, Low                  | OE# input                              | -0.30                 | _    | 0.3 * V <sub>DD</sub> | V    |
| V <sub>IH</sub>  | Input Voltage, High                 |                                        | 0.7 * V <sub>DD</sub> | -    | V <sub>DD</sub> + 0.3 | V    |
| V <sub>OL</sub>  | Output Voltage, Low <sup>[3]</sup>  | I <sub>OL</sub> = 16 mA                | -0.3                  | -    | 0.4                   | V    |
| V <sub>OH</sub>  | Output Voltage, High <sup>[3]</sup> | I <sub>OH</sub> = -16 mA               | 1.0                   | -    | V <sub>DD</sub> + 0.3 | V    |
| I <sub>IL</sub>  | Input Current, Low <sup>[4]</sup>   | $V_{IL} = V_{SS}$                      | _                     | -    | -10                   | μΑ   |
| I <sub>IH</sub>  | Input Current, High <sup>[4]</sup>  | $V_{IH} = V_{DD}$                      | _                     | -    | 100                   | μΑ   |
| I <sub>DDQ</sub> | Quiescent Supply Current            | V <sub>IN</sub> = 0V, outputs disabled | _                     | -    | 1                     | mΑ   |
| I <sub>DD</sub>  | Dynamic Supply Current              | Outputs loaded @ 62.5 MHz              | _                     | 215  | 250                   | mΑ   |
| C <sub>IN</sub>  | Input Pin Capacitance               |                                        | _                     | -    | 6                     | pF   |
| C <sub>OUT</sub> | Output Pin Capacitance              |                                        | _                     | 4.5  | 6                     | pF   |
| Z <sub>OUT</sub> | Output Impedance                    |                                        |                       | 25   | _                     | Ω    |

## AC Electrical Specifications ( $V_{DD}$ = 1.5V ± 8%, $T_A$ = 0°C to +85°C) [5]

| Parameter                       | Description                          | Description Condition                                  |      | Тур. | Max. | Unit |  |
|---------------------------------|--------------------------------------|--------------------------------------------------------|------|------|------|------|--|
| f <sub>in</sub>                 | Input Frequency                      |                                                        | _    | _    | 150  | MHz  |  |
| V <sub>IL</sub> (AC)            | AC Input HIGH Voltage                | V <sub>REF</sub> =V <sub>DD</sub> /2, Internal Voltage | 0.95 | _    |      | V    |  |
| V <sub>IH</sub> (AC)            | C Input LOW Voltage Reference        |                                                        | _    | _    | 0.55 | V    |  |
| t <sub>r</sub> , t <sub>f</sub> | Output rise/fall time <sup>[6]</sup> | 20% to 80%                                             | 0.3  | _    | 1.5  | ns   |  |
| DC                              | Output duty cycle                    | Fout < 100 MHz                                         | 48   | _    | 52   | %    |  |
| 1                               |                                      | Fout > 100 MHz                                         | 45   | _    | 55   | 1    |  |

#### Notes:

- 3. Driving  $50\Omega$  series terminated or symmetrically double parallel terminated transmission line to a termination voltage of  $V_{TT}$ .
- Inputs have pull-down resistors that affect the input current.

  AC characteristics apply for series or parallel output termination to V<sub>TT</sub>. Parameters are guaranteed by characterization and are not 100% tested.
- tr/tf times are faster with parallel terminated loads.



## AC Electrical Specifications ( $V_{DD} = 1.5V \pm 8\%$ , $T_A = 0$ °C to +85°C) (continued)<sup>[5]</sup>

| Parameter            | Description                                 | Condition                                                                          | Min. | Тур. | Max. | Unit |
|----------------------|---------------------------------------------|------------------------------------------------------------------------------------|------|------|------|------|
| tjit_DCD             | Output Duty Cycle Distortion                | Measure Jitter delay between input and output at $V_{DD}/2$ @ $f_{REF} = 62.5$ MHz | -    | _    | 300  | ps   |
|                      |                                             | DCD @ f <sub>REF</sub> = 62.5 MHz                                                  | _    | _    | 1.9  | %    |
| t <sub>sk(O)</sub>   | Output-to-Output Skew                       |                                                                                    | _    | _    | 200  | ps   |
| tsk(pp)              | Part-to-Part Skew                           |                                                                                    | _    | _    | 2    | ns   |
| t <sub>PLH</sub>     | Propagation Delay, Low to High              |                                                                                    | _    | _    | 7    | ns   |
| t <sub>PHL</sub>     | Propagation Delay, High to Low              |                                                                                    | _    | _    | 7    | ns   |
| t <sub>Qoff</sub>    | Output Disable Time                         |                                                                                    | _    | _    | 7    | ns   |
| t <sub>Qon</sub>     | Output Enable Time                          |                                                                                    | _    | _    | 7    | ns   |
| t <sub>JIT(CC)</sub> | Cycle-to-Cycle Jitter, Deterministic jitter |                                                                                    | -    | 10   | 50   | ps   |

### **Parameter Measurement Information**

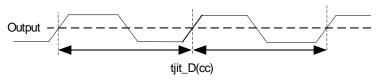



Figure 1. Cycle-to-Cycle Jitter

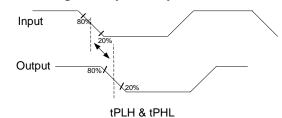



Figure 2. Propagation Delay from Input Reference to Output n

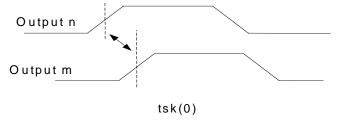



Figure 3. Output to Output Skew

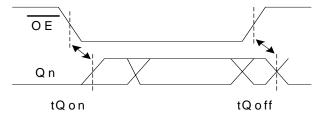



Figure 4. Output Enable/Disable Time



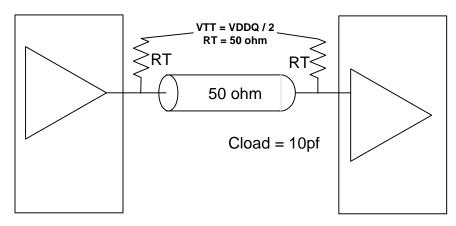



Figure 5. An Example HSTL Symmetrically Double Parallel Terminated Output Load | and CLASS II HSTL AC Test Load  $^{[7,8]}$ 

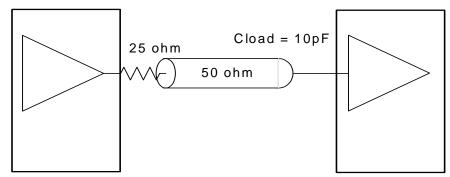
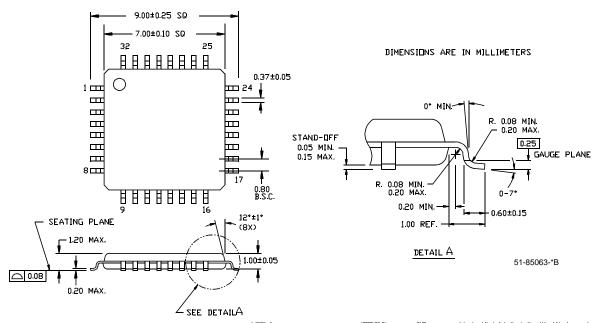



Figure 6. An Example HSTL Source Series Terminated Output Load  $^{[7,8]}$ 

## **Ordering Information**

| Part Number  | Package Type                | Product Flow             |  |
|--------------|-----------------------------|--------------------------|--|
| CY2HH8110AC  | 32-pin TQFP                 | Commercial, 0°C to +85°C |  |
| CY2HH8110ACT | 32-pin TQFP – Tape and Reel | Commercial, o C to +05 C |  |


#### Notes:

- HSTL to HSTL input. Cload includes probe and test board capacitance.



### **Package Drawing and Dimensions**

#### 32-Lead Thin Plastic Quad Flatpack 7 x 7 x 1.0mm A32



All product and company names mentioned in this document are the trademarks of their respective holders.

Document #: 38-07556 Rev \*\*



## **Document History Page**

| Document Title:CY2HH8110 1.5V 1:10 HSTL Fanout Buffer Document Number: 38-07556 |         |            |                    |                       |
|---------------------------------------------------------------------------------|---------|------------|--------------------|-----------------------|
| REV.                                                                            | ECN No. | Issue Date | Orig. of<br>Change | Description of Change |
| **                                                                              | 128398  | 08/04/03   | RGL                | New Data Sheet        |