
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7PA53FU

2-Channel Multiplexer/Demultiplexer

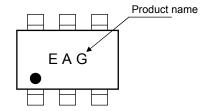
Features

- Ultra-low on resistance: R_{ON} = 21 Ω (max) at V_{CC} = 3.6 V
- Operating voltage range: V_{CC (opr.)} = 1.8 to 3.6 V
- 3.6 V Tolerant inputs.

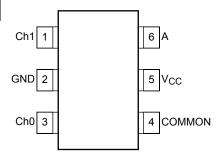
Weight: 0.0068 g (typ.)

Absolute Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Power supply voltage		V _{CC}	-0.5 to 4.6	V	
DC input voltage	•	V _{IN}	-0.5 to 4.6	٧	
Switch I/O voltage		VS	-0.5 to $V_{CC} + 0.5$	٧	
Clamp diode	Control input block	luz	-50	mA	
current	Switch block	lık	±50	ША	
Switch through of	Switch through current		100	mA	
Power dissipation		P _D	200	mW	
DC V _{CC} /ground current		Icc	±100	mA	
Storage tempera	ature	T _{stg}	-65 to 150	°C	

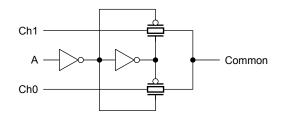

Note:

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.


Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling

Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Marking


Pin Assignment (top view)

Truth Table

Input	On Channel
Α	On Chamile
L	Ch0
Н	Ch1

System Diagram

Operating Ranges

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	1.8 to 3.6	V
Control input voltage	V _{IN}	0 to 3.6	V
Switch I/O voltage	Vs	0 to V _{CC}	V
Operating temperature	T _{opr}	-40 to 85	°C
Control input rise and fall time	d _t /d _v	0 to 10	ns/V

Electrical Characteristics

DC Electrical Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

Characteristics Symbol Test Condition		Test Condition		Min	Max	Unit	
				V _{CC} (V)			J
High level		VIH		1.8	V _{CC} × 0.75	l	
Input voltage	riigirievei		2.3 to 3.6	V _{CC} × 0.75	_	V	
Input voltage	Low level	\/		1.8	_	V _{CC} × 0.25	V
	Low level	V _{IL}	_	2.3 to 3.6	_	V _{CC} × 0.25	
			V _{IN} = 0 V, I _O = 24 mA	3.6	_	19	
			V _{IN} = 1.9 V, I _O = -24 mA	3.6	_	18	
			V _{IN} = 3.6 V, I _O = -24 mA	3.6	_	16	
On resistance			$V_{IN} = 0 \text{ V}, I_{O} = 24 \text{ mA}$	3.0	_	21	
$V_{I/O} = V_{CC}$ or GNI	n	R _{ON}	$V_{IN} = 3 \text{ V}, I_{O} = -24 \text{ mA}$	3.0	_	17	Ω
AIVO = ACC OF GIAD			$V_{IN} = 0 \text{ V}, I_{O} = 18 \text{ mA}$	2.3	_	25	
			$V_{IN} = 2.3 \text{ V}, I_O = -18 \text{ mA}$	2.3	_	20	
			$V_{IN} = 0 \text{ V}, I_{O} = 6 \text{ mA}$	1.8	_	32	
			$V_{IN} = 1.8 \text{ V}, I_{O} = -6 \text{ mA}$	1.8	_	26	
			$0 < V_{IN} < 3.6 \text{ V}, I_O = 24 \text{ mA}$	3.6	_	21	
On resistance			$0 < V_{IN} < 3 V, I_{O} = 24 \text{ mA}$	3.0	_	23	
V _{I/O} = V _{CC} to GND		R _{ON}	$0 < V_{IN} < 2.3 \ V, \ I_O = 18 \ mA$	2.3	_	42	Ω
			$0 < V_{IN} < 1.8 \text{ V}, I_O = 6 \text{ mA}$	1.8	_	140	
Control input leaka	age current	I _{IN}	V _{IN} = 0 to 3.6 V	3.6	_	±5.0	μА
Switch I/O leakage current		I _{SZ}	V _{IN} = 0 to 3.6 V	3.6	_	10.0	μА
Quiescent supply	current	I _{CC}	V _{IN} = V _{CC} or GND	3.6	_	20.0	
Increase in I _{CC} per Input		Δl _{CC}	V _{IH} = 3 V	3.6	_	750	μΑ

AC Characteristics (Ta = -40 to 85°C, input $t_r = t_f = 2.0$ ns, $C_L = 30$ pF, $R_L = 500~\Omega$)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
	t	Figure 1,2	1.8	_	9	
Output enable time	^t pZL ^t pZH		2.5 ± 0.2	_	7	ns
			3.3 ± 0.3	_	5	
Output disable time	t _{pLZ}	Figure 1,2	1.8	_	9	
			2.5 ± 0.2	_	7	ns
	^t pHZ		3.3 ± 0.3	_	5	

The propagation delay time is defined by test condition as follows: (calculating condition: see Figure 3)

Propagation delay time (reference) = - ($C_{OS} + C_{L}$) · ($R_{DRIVE+} R_{ON}$) · In ((($V_{OH} - V_{OL}$) - V_{M}) / ($V_{OH} - V_{OL}$))

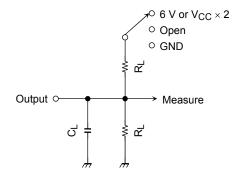
 R_{DRIVE} = Output impedance of front circuit V_{M} = Arbitrary output threshold voltage

Example of calculation:

Propagation delay time (reference) = - (15 + 15) · (0 + 21) · In (((3.6 - 0) - 3.6 · 50%) / (3.6 - 0)) = approximately 0.4 ns

Calculating condition:

 V_{CC} = 3.6V , C_L = 15pF , R_{DRIVE} = 0 Ω (ideal signal source) , V_M = 50% Input signal to switch = Digital signal ("H" revel voltage=3.6V , "L" revel voltage = 0V)


Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition		Тур.	Unit
Characteristics	Symbol	rest Condition	V _{CC} (V)		
Input capacitance	C _{IN}	_	1.8, 2.5, 3.3	3	pF
Common Terminal Capacitance	C _{IS}	_	1.8, 2.5, 3.3	6	pF
Switch Terminal Capacitance	Cos	_	1.8, 2.5, 3.3	15	pF
Feed Through Capacitance	C _{IOS}	_	1.8, 2.5, 3.3	0.3	pF
Power dissipation capacitance	C _{PD}	$f_{IN} = 10 \text{ MHz}$ (Note 1) 1.8, 2.5, 3.3	5.5	pF

Note 1: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current is given as:

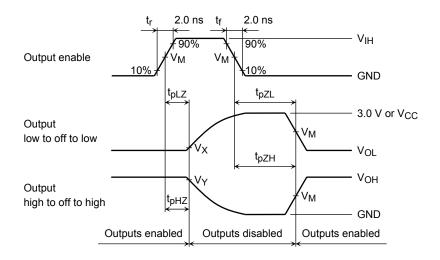
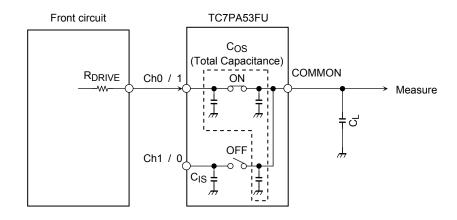
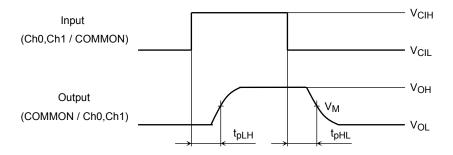

 $I_{CC (opr.)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

Figure 1 AC Test Circuit

Characteristics	Switch	
	6 V at $V_{CC} = 3.3 \pm 0.3 \text{ V}$	
t_{pLZ}, t_{pZL}	Voo v 2	at V_{CC} = 2.5 \pm 0.2 V
	V _{CC} × 2	at V _{CC} = 1.8 V
t _{pHZ} , t _{pZH}	GND	


Figure 2 AC Waveforms t_{pLZ} , t_{pHZ} , t_{pZL} , t_{pZH}

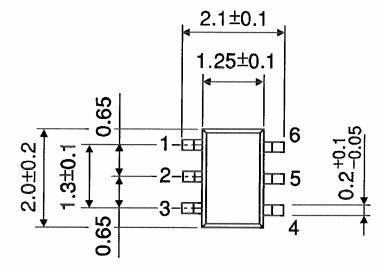


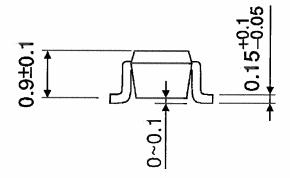
Symbol	Vcc			
Syllibol	$3.3\pm0.3~\textrm{V}$	$2.5\pm0.2\textrm{V}$	1.8 V	
V_{IH}	2.7 V	V _{CC}	V _{CC}	
V _M	1.5 V	V _{CC/2}	V _{CC/2}	
VX	V _{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.15 V	
V_{Y}	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.15 V	

5 2007-11-01

Figure 3 Calculating condition for propagation delay time $t_{\text{pLH}},\,t_{\text{pHL}}$

 R_{DRIVE} = Output impedance of front circuit V_{M} = Arbitrary output threshold voltage V_{CIH} = "H" revel input voltage to switch V_{CIL} = "L" revel input voltage to switch


Symbol		V _{CC}	
Syllibol	3.3 ± 0.3 V	2.5 ± 0.2 V	1.8 V
V _M	arbitrary	arbitrary	arbitrary


6 2007-11-01

Package Dimensions

SSOP6-P-0.65A

Unit: mm

Weight: 0.0068 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.

8