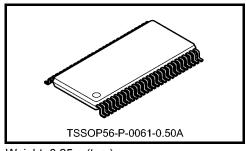
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic


TC74VCXHR162543FT

Low-Voltage 16-Bit Registered Transceiver with Bushold

The TC74VCXHR162543FT is a high-performance CMOS 16-bit registered transceiver. Designed for use in 1.8-V, 2.5-V or 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

The TC74VCXHR162543FT can be used as two 8-bit transceivers or one 16-bit transceiver. Separate latch-enable ($\overline{\text{LEAB}}$ or $\overline{\text{LEBA}}$) and output-enable ($\overline{\text{OEAB}}$ or $\overline{\text{OEBA}}$) inputs are provided for each register to permit independent control in either direction of data flow.

The A-to-B enable (\overline{CEAB}) input must be low in order to enter data from A or to output data from B. If \overline{CEAB} is low and \overline{LEAB} is low, the A-to-B latches are transparent; a subsequent

Weight: 0.25 g (typ.)

low-to-high transition of $\overline{\text{LEAB}}$ puts the Alatches in the storage mode. With $\overline{\text{CEAB}}$ and $\overline{\text{OEAB}}$ both low, the 3-state B outputs are active and reflect the data present at the output of the A latches.

Data flow from B to A is similar but requires using the $\overline{\text{CEBA}}$, $\overline{\text{LEBA}}$, and $\overline{\text{OEBA}}$ inputs.

When the \overline{OE} input is high, the outputs are in a high-impedance state. This device is designed to be used with 3-state memory address drivers, etc.

The 26- Ω series resistor helps reducing output overshoot and undershoot without external resistor.

The A, B data inputs include active bushold circuitry, eliminating the need for external pull-up resistors to hold unused or floating data inputs at a valid logic level.

All inputs are equipped with protection circuits against static discharge.

Features (Note)

- $26-\Omega$ series resistors on outputs
- Low-voltage operation: V_{CC} = 1.8 to 3.6 V
- Bushold on data inputs eliminating the need for external pull-up/pull-down resistors
- High-speed operation: $t_{pd} = 4.4 \text{ ns} (\text{max}) (V_{CC} = 3.0 \text{ to } 3.6 \text{ V})$

$$t_{pd} = 5.4 \text{ ns} (\text{max}) (\text{V}_{\text{CC}} = 2.3 \text{ to } 2.7 \text{ V})$$

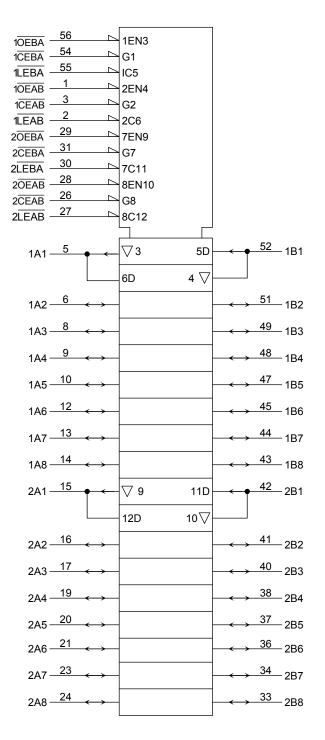
$$: t_{pd} = 9.8 \text{ ns} (max) (V_{CC} = 1.8 \text{ V})$$

- 3.6-V tolerant control inputs
- Output current: $I_{OH}/I_{OL} = \pm 12 \text{ mA} \text{ (min)} (V_{CC} = 3.0 \text{ V})$

$$IOH/IOL = \pm 8 \text{ mA} \text{ (min)} (VCC = 2.3 \text{ V})$$

- $: I_{OH}/I_{OL} = \pm 4 \text{ mA (min)} (V_{CC} = 1.8 \text{ V})$
- Latch-up performance: -300 mA
- ESD performance: Machine model $\geq \pm 200 \text{ V}$

Human body model $\geq \pm 2000 \text{ V}$


• Package: TSSOP

Note: Do not apply a signal to any bus pins when it is in the output mode. Damage may result.

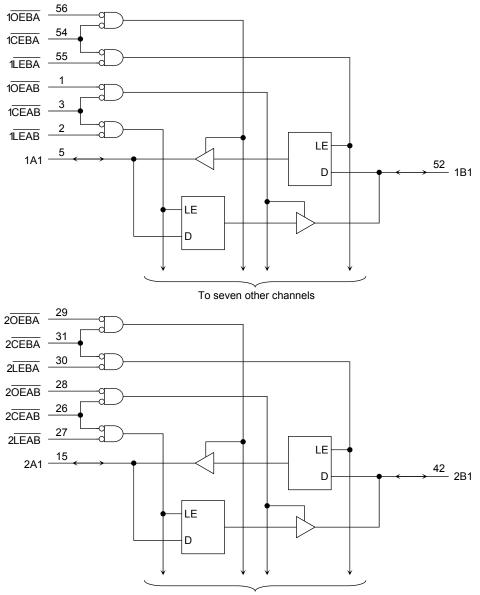
Pin Assignment (top view)

1LEAB 2 4 1CEAB 3 6 GND 4 6 1A1 5 6 1A2 6 6 VCC 7 6 1A3 8 6 1A4 9 6 1A4 9 6 1A4 9 6 1A5 10 6 1A4 9 6 1A5 10 6 1A6 12 6 1A6 12 6 1A6 12 6 1A7 13 6 1A8 14 7 1A8 14 7 1A8 14 7 1A8 14 18 1A7 13 6 1A8 14 18 1A8 14 18 1A8 14 18 1A9 14 18 1A9 14 18 1A1 18 139	
GND 4 1A1 5 1A2 6 VCC 7 1A3 8 1A4 9 1A4 9 1A4 9 1A4 9 1A4 9 1A4 9 1A5 10 1A6 12 1A6 12 1A6 12 1A6 12 1A6 12 1A6 12 1A7 13 1A8 14 1A7 13 1A8 14 1A7 13 1A8 14 1A7 13 1A8 14 1A8 14 1A9 143 1A1 15 1A8 14 1A9 14 1A1 15 1A2 16 1A3 18 1A4 18 1A9 18 1A1	
1A1 5 1A2 6 1A2 6 VCC 7 1A3 8 1A4 9 1A4 9 1A5 10 1A4 9 1A5 10 1A6 12 1A7 13 1A8 14 1A6 12 1A6 12 1A6 12 1A7 13 1A8 14 1A7 13 1A8 14 1A7 13 1A8 14 1A8 14 1A7 13 1A8 14 1A8 14 1A8 14 1A1 12 2A2 16 1A8 14 1A9 39 3A1 18 2A4 19 2A5 20	
1A2 6 VCC 7 1A3 8 1A4 9 1A5 10 1A5 10 1A6 12 1A7 13 1A8 14 1A5 10 1A6 12 1A6 12 1A7 13 1A8 14 1A7 13 1A8 14 1A7 13 1A8 14 1A8 14 1A7 13 1A8 14 1A9 14 1A1 2B2 2A3 17 1A9 38 2A4 19 2A5 20	
VCC 7 1A3 8 1A4 9 1A4 9 1A5 10 1A5 10 1A6 12 1A7 13 1A8 14 1A6 12 1A6 12 1A6 12 1A6 12 1A6 12 1A7 13 1A8 14 1A7 13 1A8 14 1A9 14 2A1 15 1A1 2B2 2A3 17 1A9 38 2A4 19 2A5 20	
1A3 8 49 1B3 1A4 9 48 1B4 1A5 10 47 1B5 GND 11 46 GND 1A6 12 44 1B7 1A8 14 43 1B8 1A7 13 443 1B7 1A8 14 433 1B8 2A1 15 441 2B2 2A3 17 440 2B3 GND 18 39 GND 2A4 19 38 2B4 2A5 20 437 2B5	
1A4 9 1A5 10 GND 11 GND 11 1A6 12 1A7 13 1A8 14 1A7 13 1A8 14 2A1 15 GND 18 GND 18 2A3 17 2A4 19 2A5 20	
1A5 10 GND 11 1A6 12 1A6 12 1A7 13 1A8 14 1A8 14 2A1 15 GND 18 GND 18 2A3 17 2A4 19 2A5 20	
GND 11 1A6 12 1A6 12 1A7 13 1A8 14 1A8 14 2A1 15 2A2 16 GND 18 2A4 19 2A5 20	
1A6 12 1A7 13 1A8 14 1A8 14 2A1 15 2A2 16 3A3 17 3A4 19 3A5 284 3A6 371 3A5 284	
1A7 13 1A8 14 1A8 14 2A1 15 2A2 16 2A3 17 2A4 19 2A5 20	
1A8 14 2A1 15 2A2 16 2A3 17 GND 18 2A4 19 2A5 20	
2A1 15 2A2 16 2A3 17 GND 18 2A4 19 2A5 20	
2A2 16 41 2B2 2A3 17 40 2B3 GND 18 39 GND 2A4 19 38 2B4 2A5 20 371 2B5	
2A3 17 40 2B3 GND 18 39 GND 2A4 19 38 2B4 2A5 20 371 2B5	
GND 18 39 GND 2A4 19 38 2B4 2A5 20 371 2B5	
2A4 19 38 2B4 2A5 20 371 2B5	
2A5 20 371 2B5	
2A6 21 36 2B6	
V _{CC} 22	
2A7 23 34 2B7	
2A8 24 33 2B8	
GND 25 32 GND	
2CEAB 26 31 2CEBA	
2LEAB 27	
20EAB 28 29 20EBA	

IEC Logic Symbol

Truth Table (A bus \rightarrow B bus each 8-bit latch)

	Outputs			
CEAB	LEAB	OEAB	А	В
Н	Х	Х	Х	Z
Х	Х	Н	Х	Z
	Н	1	х	В0
L		L	~	(Note)
L	L	L	L	L
L	L	L	Н	Н


Note: Output level before the indicated steady-state input conditions were established.

Truth Table (B bus \rightarrow A bus each 8-bit latch)

	Inputs							
CEBA	LEBA	OEBA	В	А				
Н	Х	Х	Х	Z				
Х	Х	Н	Х	Z				
	Н		х	A0				
L	11	L	^	(Note)				
L	L	L	L	L				
L	L	L	Н	Н				

Note: Output level before the indicated steady-state input conditions were established.

System Diagram

To seven other channels

Absolute Maximum Ratings (Note 1)

	Characteristics	Symbol	Rating	Unit
Power sup	oply voltage	V _{CC}	-0.5 to 4.6	V
DC input			-0.5 to 4.6	
voltage	(An Rn)	V _{IN}	-0.5 to V _{CC} + 0.5	V
(An, Bn)			(Note 2)	
DC			-0.5 to V _{CC} + 0.5	
output (An, Bn) voltage		Vout	(Note 3)	V
Input diode current		I _{IK}	-50	mA
Output diode current		IOK	±50 (Note 4)	mA
Output current		IOUT	±50	mA
Power dissipation		PD	400	mW
DC V _{CC} /ground current per supply pin		I _{CC} /I _{GND}	±100	mA
Storage te	emperature	T _{stg}	–65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

- Note 2: OFF state
- Note 3: High or low state. I_{OUT} absolute maximum rating must be observed.

Note 4: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Operating Ranges (Note 1) (Note 2)

Characteristics		Symbol	Rating	Unit	
Power su	oply voltage	Vcc	1.8 to 3.6	V	
Fower su	opiy voltage	VCC	1.2 to 3.6 (Note 3)	v	
Input voltage (<u>OEAB</u> , <u>OEBA</u> , <u>LEAB</u> , LEBA, <u>CEAB</u> , <u>CEBA</u>) (An, Bn)		VIN	-0.3 to 3.6	V	
			0 to V _{CC} (Note 4)		
Output voltage (An, Bn)		V _{OUT}	0 to V_{CC} (Note 5)	V	
			±12 (Note 6)		
Output current		I _{OH} /I _{OL}	±8 (Note 7)	mA	
			±4 (Note 8)		
Operating temperature		T _{opr}	-40 to 85	°C	
Input rise	and fall time	dt/dv	0 to 10 (Note 9)	ns/V	

Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Note 2: Floating or unused control inputs must be held high or low.

Note 3: Data retention only

- Note 4: OFF state
- Note 5: High or low state
- Note 6: $V_{CC} = 3.0$ to 3.6 V
- Note 7: $V_{CC} = 2.3$ to 2.7 V
- Note 8: V_{CC} = 1.8 V
- Note 9: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

Electrical Characteristics

DC Characteristics (Ta = -40 to 85°C, 2.7 V < V_{CC} \leq 3.6 V)

Character	ristics	Symbol	Test C	Condition		Min	Max	Unit			
					V _{CC} (V)						
Input voltage	H-level	VIH	-		2.7 to 3.6	2.0	—	V			
	L-level	VIL			2.7 to 3.6	_	0.8				
				I _{OH} = −100 μA	2.7 to 3.6	V _{CC} - 0.2	—				
	H-level	Vон	V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -6 \text{ mA}$	2.7	2.2	_				
				$I_{OH} = -8 \text{ mA}$	3.0	2.4	_				
Output voltage				$I_{OH} = -12 \text{ mA}$	3.0	2.2	_	V			
				I _{OL} = 100 μA	2.7 to 3.6	_	0.2				
	L level		N/	N	N/		$I_{OL} = 6 \text{ mA}$	2.7	_	0.4	
	L-level	V _{OL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	V_{OL} $V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 8 \text{ mA}$	I _{OL} = 8 mA	3.0	_	0.5			
				I _{OL} = 12 mA	3.0	_	0.8				
Input leakage curre (OEAB , OEBA , LEBA , CEAB , O	LEAB ,	I _{IN}	V _{IN} = 0 to 3.6 V		2.7 to 3.6	_	±5.0	μA			
Bushold input mini	mum drive		V _{IN} = 0.8 V		3.0	75					
hold current		II (HOLD)	V _{IN} = 2.0 V		3.0	-75		μA			
Bushold input over	-drive current			(Note 1)	3.6	_	450				
to change state		II (OD)		(Note 2)	3.6	_	-450	μA			
3-state output OFF	state current	I _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or } GND$		2.7 to 3.6	_	±10.0	μΑ			
Quiescent supply of	current	Icc	$V_{IN} = V_{CC}$ or GND		2.7 to 3.6	_	20.0	μA			
Increase in I _{CC} pe	r input	∆l _{CC}	$V_{IH} = V_{CC} - 0.6 V$		2.7 to 3.6	_	750	μA			

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 2: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

DC Characteristics (Ta = -40 to 85°C, 2.3 V \leq V_{CC} \leq 2.7 V)

Character	ristics	Symbol	Test C	Condition	V _{CC} (V)	Min	Max	Unit
	H-level	VIH	-		2.3 to 2.7	1.6		
Input voltage	L-level	VIL	-		2.3 to 2.7		0.7	V
				I _{OH} = −100 μA	2.3 to 2.7	V _{CC} - 0.2	_	
	H-level	V _{OH}	VIN = VIH or VII	$I_{OH} = -4 \text{ mA}$	2.3	2.0	—	
				$I_{OH} = -6 \text{ mA}$	2.3	1.8		
Output voltage				$I_{OH} = -8 \text{ mA}$	2.3	1.7		V
				I _{OL} = 100 μA	2.3 to 2.7		0.2	
	L-level	V _{OL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 6 \text{ mA}$	2.3		0.4	
				$I_{OL} = 8 \text{ mA}$	2.3		0.6	
Input leakage curre $(\overline{OEAB}, \overline{OEBA}, \overline{OEBA}, \overline{OEBA}, \overline{OEBA}, \overline{OEAB}, \overline{OEAB}$	LEAB ,	I _{IN}	V _{IN} = 0 to 3.6 V		2.3 to 2.7	_	±5.0	μA
Bushold input mini	mum drive		V _{IN} = 0.7 V		2.3	45	_	
hold current		II (HOLD)	V _{IN} = 1.6 V		2.3	-45		μA
Bushold input over	r-drive current			(Note 1)	2.7	_	300	
to change state		II (OD)		(Note 2)	2.7	_	-300	μA
3-state output OFF	state current	I _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or } GND$		2.3 to 2.7		±10.0	μA
Quiescent supply of	current	Icc	$V_{IN} = V_{CC}$ or GND		2.3 to 2.7	_	20.0	μA

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 2: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

DC Characteristics (Ta = -40 to 85°C, 1.8 V \leq V_{CC} < 2.3 V)

Characteris	stics	Symbol	Test C	condition	V _{CC} (V)	Min	Max	Unit
	H-level	V _{IH}	-	_	1.8 to 2.3	0.7 × V _{CC}	_	
Input voltage	L-level	VIL	-		1.8 to 2.3		$0.2 \times V_{CC}$	V
	H-level	Vон	VIN = VIH or VIL	I _{OH} = -100 μA	1.8	V _{CC} - 0.2	_	
Output voltage		0.11		$I_{OH} = -4 \text{ mA}$	1.8	1.4	_	V
	L-level	Max		I _{OL} = 100 μA	1.8	_	0.2	
	L-level	V _{OL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 4 \text{ mA}$	1.8	_	0.3	
Input leakage curren (<u>OEAB</u> , <u>OEBA</u> , <u>I</u> LEBA , CEAB , C	<u>LEAB</u> ,	I _{IN}	V _{IN} = 0 to 3.6 V		1.8	_	±5.0	μA
Bushold input minim	num drive		V _{IN} = 0.36 V		1.8	25		^
hold current		II (HOLD)	V _{IN} = 1.26 V		1.8	-25	_	μA
Bushold input over-	drive current	h (an)		(Note 1)	1.8	_	200	
to change state		I _{I (OD)}		(Note 2)	1.8	_	-200	μA
3-state output OFF	state current	I _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or } GND$		1.8	_	±10.0	μΑ
Quiescent supply cu	urrent	ICC	$V_{IN} = V_{CC}$ or GND		1.8	_	20.0	μA

Note 1: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 2: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

TOSHIBA

AC Characteristics (Ta = -40 to 85°C, input: $t_r = t_f = 2.0$ ns, $C_L = 30$ pF, $R_L = 500 \Omega$) (Note 1)

Characteristics	Symbol	Test Condition		Min	Max	Unit
Characteriotics	Cymbol		$V_{CC}(V)$	WIIIT	Max	Onic
Propagation delay time	t		1.8	1.5	9.8	
(An, Bn-Bn, An)	t _{pLH} t _{pHL}	Figure 1, Figure 2	2.5 ± 0.2	0.8	5.4	ns
	чрнс		$\textbf{3.3}\pm\textbf{0.3}$	0.6	4.4	
Propagation dology time	+		1.8	1.5	9.8	
Propagation delay time (EAB, EBA -Bn, An)	t _{pLH}	Figure 1, Figure 2	2.5 ± 0.2	0.8	6.4	ns
(LLAD, LLDA-DII, AII)	^t pHL		$\textbf{3.3}\pm\textbf{0.3}$	0.6	4.8	
2 state subsut en skie time			1.8	1.5	9.8	
3-state output enable time $(\overline{OEAB}, \overline{OEBA}, \overline{CEAB}, \overline{CEBA})$	t _{pZL}	Figure 1, Figure 4	2.5 ± 0.2	0.8	5.9	ns
(UEAB, UEBA, CEAB, CEBA)	^t pZH		3.3 ± 0.3	0.6	4.3	
			1.8	1.5	8.8	
3-state output disable time $\sqrt{2540}$	t _{pLZ} t _{pHZ}	Figure 1, Figure 4	2.5 ± 0.2	0.8	4.9	ns
(OEAB, OEBA, CEAB, CEBA)			3.3 ± 0.3	0.6	4.3	
			1.8	4.0	_	
Minimum pulse width (IEAB,IEBA,IEAB,IEAB)	t _{W (L)}	(L) Figure 1, Figure 2, Figure 3	2.5 ± 0.2	1.5	_	ns
(LEAD, LEDA, CEAD, CEDA)			3.3 ± 0.3	1.5	_	
			1.8	2.5	_	
Minimum setup time (An, Bn-LE, CE)	ts	Figure 1, Figure 2, Figure 3	2.5 ± 0.2	1.5	_	ns
(AN, BN-LE, CE)			3.3 ± 0.3	1.5	_	
Minimum hold time (An, Bn- \overline{LE} , \overline{CE})			1.8	1.0	_	
	t _h	Figure 1, Figure 2, Figure 3	2.5 ± 0.2	1.0	_	ns
			$\textbf{3.3}\pm\textbf{0.3}$	1.0	_	
			1.8	_	0.5	
Output to output skew	t _{osLH}	(Note 2)	2.5 ± 0.2	_	0.5	ns
	t _{osHL}		$\textbf{3.3}\pm\textbf{0.3}$	—	0.5	

Note 1: For $C_L = 50 \text{ pF}$, add approximately 300 ps to the AC maximum specification.

Note 2: Parameter guaranteed by design. $(t_{osLH} = |t_{pLHm} - t_{pLHn}|, t_{osHL} = |t_{pHLm} - t_{pHLn}|)$

Dynamic Switching Characteristics

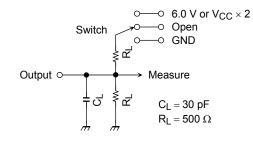
(Ta = 25°C, input: $t_r = t_f = 2.0$ ns, $C_L = 30$ pF, $R_L = 500 \Omega$)

Characteristics	Symbol	Test Condition	l		Тур.	Unit
				$V_{CC}(V)$		
		$V_{IH} = 1.8 V, V_{IL} = 0 V$	(Note)	1.8	0.15	
Quiet output maximum dynamic V _{OL}	V _{OLP}	$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note)	2.5	0.25	V
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	(Note)	3.3	0.35	
Quiet output minimum dynamic V _{OL}	V _{OLV}	$V_{IH} = 1.8 V, V_{IL} = 0 V$	(Note)	1.8	-0.15	
		$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note)	2.5	-0.25	V
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	(Note)	3.3	-0.35	
Quiet output minimum dynamic V _{OH}		$V_{IH} = 1.8 V, V_{IL} = 0 V$	(Note)	1.8	1.55	
	V _{OHV}	$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note)	2.5	2.05	V
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	(Note)	3.3	2.65	

Note: Parameter guaranteed by design.

Capacitive Characteristics (Ta = 25°C)

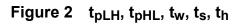
Characteristics	Symbol	Test Condition		Тур.	Unit
Characteristics	Symbol		V _{CC} (V)	ryp.	Onit
Input capacitance	C _{IN}	(<u>OEAB</u> , OEBA, LEAB, LEBA, CEAB, CEBA)	1.8, 2.5, 3.3	6	pF
Bus I/O capacitance	C _{I/O}	_	1.8, 2.5, 3.3	7	pF
Power dissipation capacitance	C _{PD}	$f_{IN} = 10 \text{ MHz} \tag{Note}$	1.8, 2.5, 3.3	20	pF

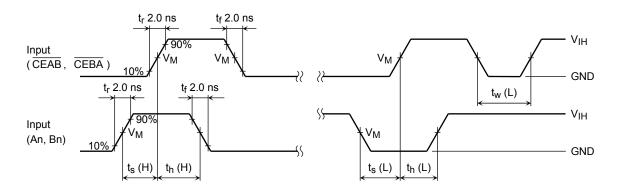

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

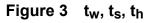
Average operating current can be obtained by the equation:

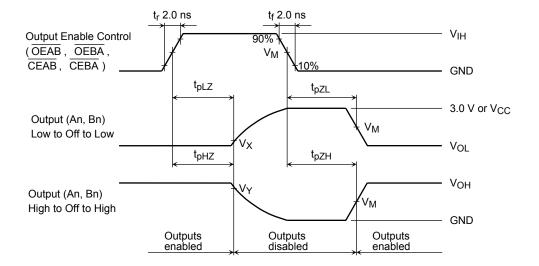
 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/16$ (per bit)

TOSHIBA


AC Test Circuit




Parameter	Switch
t _{pLH} , t _{pHL}	Open
t _{pLZ} , t _{pZL}	
t _{pHZ} , t _{pZH}	GND


t_r 2.0 ns t_f 2.0 ns VIH 90% Input VM VM ٧м (LEAB , LEBA) 10% GND \mathcal{X} 22 t_r 2.0 ns t_f 2.0 ns t_w (L) 5 V_{IH} 90% Input Vм ٧м (An, Bn) 10% -55 GND t_s (H) t_h (H) t_s (L) t_h (L) 5 VOH Output V_{M} Vм (Bn, An) - V_{OL} 55 t_{pHL} tpHL tpLH tpLH

AC Waveform

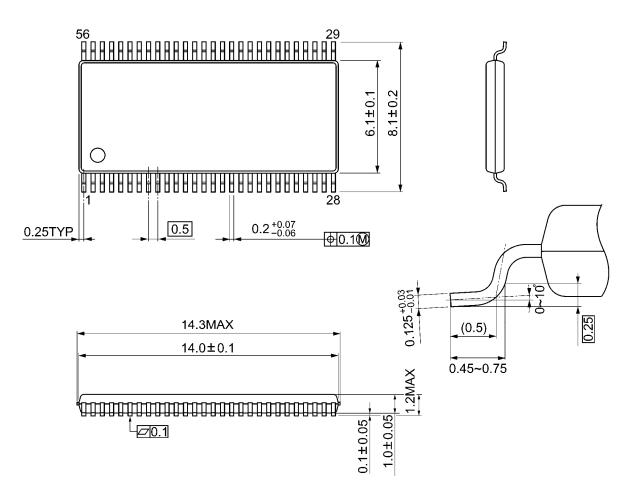

Symbol	V _{CC}		
	$3.3\pm0.3~V$	$2.5\pm0.2~\text{V}$	1.8 V
VIH	2.7 V	V _{CC}	V _{CC}
VM	1.5 V	V _{CC} /2	V _{CC} /2
VX	V_{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.15 V
Vy	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.15 V

Figure 4	tpLZ, tpHZ, tpZL, tpZH
----------	------------------------

Package Dimensions

TSSOP56-P-0061-0.50A

Unit: mm

Weight: 0.25 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.