

DF005 THRU DF10

CURRENT 1.0 Ampere VOLTAGE 50 to 1000 Volts

Features

- · Glass Passivated Die Construction
- · Diffused Junction
- · Low Forward Voltage Drop, High Current Capability
- · Surge Overload Rating to 50A Peak
- · Designed for Printed Circuit Board Applications
- · Plastic Material UL Flammability Classification 94V-0

Mechanical Data

· Case: Molded Plastic

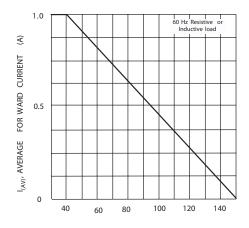
· Terminals : Solder Plated Leads,

Solderable per MIL-STD-202, Method 208

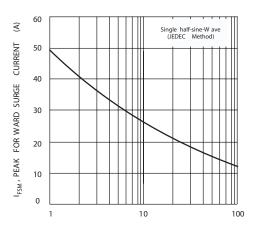
Polarity: As Marked on Case
Approx. Weight: 0.38 grams
Mounting Position: Any
Marking: Type Number

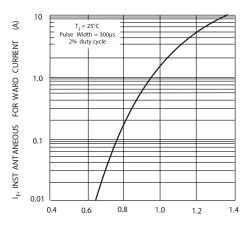
Maximum Ratings And Electrical Characteristics

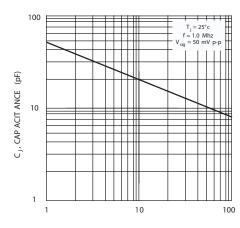
(Ratings at 25° C ambient temperature unless otherwise specified, Single phase, half wave 60Hz, resistive or inductive load. For capacitive load, derate by 20%)

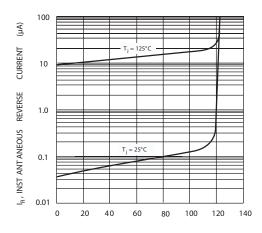

	Symbols	DF005	DF01	DF02	DF04	DF06	DF08	DF10	Units
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRMM VRWM VR	50	100	200	400	600	800	1000	Volts
RMS Reverse Voltage	VRMS	35	70	140	280	420	560	700	Volts
Average Rectified Output Current @ Ta=40°C	lo	1.0							Amp
Non-Repetitive Peak Forward Surge Current, 8.3ms single half-sine-wave superimposed on rated load (JEDEC method)	lfsm	50							Amps
Forward Voltage (per element) @ IF=1.0 A	VFM	1.1							Volts
Peak Reverse Current at Rated DC Blocking Voltage (per element) @ TA=25°C	− IRM	10 500							μΑ
I ² t Rating for Fusing (t<8.3ms)	l ² t	10.4						A ² s	
Typical Junction Capacitance per element (Note 1)	Cj	25						pF	
Typical Thermal Resistance, Junction to Ambient (Note 2)	R <i>⊕</i> JA	40							°C/W
Operating and Storage Temperature Range	Tj Tstg	-65 to +150							င်

Notes


- (1) Measured at 1.0MHz and Applied Reverse Voltage of 4.0V DC.
- (2) Thermal Resistance, junction to ambient, measured on PC board with 5.02mm (0.03mm thick) land areas.


RATING AND CHARACTERISTIC CURVES DF005 THRU DF10


T_A, AMBIENT TEMPERA TURE (°C) Fig. 1 Output Current Derating Curve


NUMBER OF CYCLES AT 60 Hz Fig. 3 Max Non-Repetitive PeakForward Sur ge Current

 $\rm V_{F}$, INST ANTANEOUS FOR WARD VOLTAGE (V) Fig. 2 Typ Forward Characteristics (per element)

 $\label{eq:VRSE} {\rm V_{R},\,REVERSE} \quad {\rm VOL\,TAGE} \ \ \, {\rm (V)}$ Fig. 4 Typ Junction Capacitance (per element)

PERCENT OF RATED PEAK REVERSE VOLTAGE (%) Fig. 5 Typ Reverse Characteristics (per element)