
Res. [1] [24] VCC

Res. [2] [23] FILTER_VCC

Res. [3] [22] USB_VCC

SD7 [4] [21] DM

SD6 [5] [20] DP

SD5 [6] [19] GND

SD4 [7] [18] TXE#

SD3 [8] [17] WRITE

SD2 [9] [16] READ#

SD1 [10] [15] RESET#

SD0 [11] [14] RXF#

GND [12] [13] RCCLK

Res. Reserved, Unconnected. Do not use.
SD(0..7) Data Bus. Driven when READ# is asserted.

Data inputs when WRITE is asserted.
RCCLK Output of the onboard RC Timer.
RXF# Active low output. When asserted, receive

data is available, and can be read from FIFO.
RESET# Active Low output. Remains low for 140msec

after power-up, then goes high.
READ# Active Low input. When low, the device drives

the current receive FIFO data onto SD0-SD7.
WRITE Input that Clocks Data at SD0-SD7 into

transmit FIFO on a High-to-Low transition.
TXE# Active Low Output. When asserted, signifies

transmit FIFO space is available.
DP USB Plus Data Signal.
DM USB Minus Data Signal.
USB_VCC Input to onboard 5volt power filter.
FILTER_VCC Output of onboard 5volt power filter.
VCC 5 Volt power input.
GND Ground.

 Pinout Information

 The USB245 is small, easy to use device with all necessary
timing circuits, and power filtering built in.
 Each contains a preprogrammed EEPROM which holds the
device and vendor ID codes.
 The 8-bit data bus easily connects to processor data buses.
The two control bus lines (READ# and WRITE) direct data flow
from the device, while two status lines (TXE# and RXF#) give
information about the state of the internal transmit and receive
FIFOs. The status lines can also be used as interrupt sources
for the processor.
 The onboard RESET# line is routed externally and can be
used to drive other circuits.
 The device can be wired to derive and source power from
the USB bus, or alternatively have power sourced from the
processor interface.

• USB ver1.1 compatible device with
a 384 byte transmit FIFO and 128
Byte receive FIFO.

• Works with FTDI’s Virtual Com
Port (VCP) and D2XX Drivers for
Microsoft Windows.

• Small Size: Surface Mount
Technology allows the device to fit
in standard 24 pin DIP socket.

• Preprogrammed 93C46 EEPROM
with unique USB device information.

• Easy to use 8-bit microcontroller-
microprocessor interface with FIFO
status lines

USB245

All Trademarks are property of
their respective owners

© 2002 Xylotex
www.xylotex.com

Timing Information

FIFO READ CYCLE

 T5 T6

RXF#

 T1 T2

RD#

 T3 T4

D0-D7

 Min Max Unit
T1 RD Active Pulse Width 50 ns

T2 RD to RD Pre-Charge Time 50 ns

T3 RD Active to Valid Data 30 ns

T4 Valid Data Hold from RD inactive 10 ns

T5 RD Inactive to RXF# 5 25 ns

T6 RXF# Inactive after RD cycle 80 ns

FIFO WRITE CYCLE T12

 T11
TXE#

 T7 T8

WR

 T9 T10

D0-D7

T7 WR Active Pulse Width 50 ns

T8 WR to WR Pre-Charge Time 50 ns

T9 Data Setup Time Before WR Inactive 20 ns

T10 Data Hold Time from WR Inactive 10 ns

T11 WR inactive to TXE# 5 25 ns

T12 TXE# inactive after RD cycle 80 ns

Device Function
 A processor can use the status lines TXE# and RXF# in either a polled or interrupt manner.
The TXE# line will go active LOW indicating that there is room available in the 384 bytes transmit
buffer for the processor to place another byte for transmission over the USB bus. The RXF# line
will go active LOW when there is at least one byte available in the 128 byte FIFO for the
processor to read.
 To write data into the transmit FIFO, the following procedure should be used: With the WRITE
line LOW, the processor places the data on lines D0-D7. The processor then strobes the WRITE
line by bringing it HIGH for a minimum of 50 ns, and then completes the cycle by bringing the
WRITE line back LOW.
 To read data from the receive FIFO, the processor drives the RD# line LOW. After a maximum
time of 30 ns, valid data will be driven on lines D0-D7. The processor reads the data and then
drives the RD# line back inactive HIGH.
 For USB powered controls, USB power would be fed into Pin 22. The filtered output provided
at Pin 23 would then be tied to Pin 24 (Vcc). This power (+5volts) can be used to power other
circuits in the design, up to the maximum current draw per USB device. For USB specifications
see: www.usb.org/developers.
 For System powered controls, +5 volts can be directly fed into Pin 24. Pins 22-23 are left
unconnected. Alternatively system power can be fed into Pin 22. Pin 23 would then be tied to Pin
24 for extra system power filtering. In this case USB power is never connected to the device.
 USB power and alternate System power sources should not be tied together, except for
common grounding (GND).
 The USB245 is a ‘slave’ or ‘peripheral’ device to a ‘master’ or ‘host’ USB controller such as a
PC running Windows 98/2000. The host must have appropriate drivers running to access the
USB245. Drivers are available for Windows and Mac Systems.

Addition Information
USB Cable color codes: Red 5 Volts, Black GND, Green DP, White DM

Schematic Usage
See appendix for a simple example using the USB245 with the Ubicom SX-28.

Pin Orientation
 Pin 1 Vcc

 GND (version 1.0)

Software Drivers Supplied & Supported by: Future Technology Devices International Ltd. (FTDI).
http://www.ftdichip.com

The Following is a sample ‘C’ that reads a character from the USB and writes it back out.
#include <c:\sxc\include\dev\SX28AC.H>
#include <c:\sxc\include\port.h>

#define TXEn PORTA.3 // INPUT
#define WRITE PORTA.2 // OUTPUT
#define READn PORTA.1 // OUTPUT
#define RXFn PORTA.0 // INPUT

#pragma FUSE = FOSC_HS2 & TURBO & WDTD
#pragma FUSEX = EXTEND

unsigned char byte;
/*--*/
/* */
/*--*/
void send_byte()
{
DDR(PORTC,0x00); // make PORTC output
WRITE=1;
NOP();
PORTC=byte;
NOP();
WRITE=0;
DDR(PORTC,0xFF); // now make PORTC input
}
/*--*/
/* */
/*--*/
void read_byte()
{
READn=0;
NOP();
byte=PORTC;
NOP();
READn=1;
}
/*--*/
/* */
/*--*/
void main()
{
OPTION(RTW|RTE_D|PSA); // start with RTC int disabled

DDR(PORTC,0xFF); // USB Data Port
DDR(PORTB,0xFF); // all inputs
DDR(PORTA,0xF9); // USB Status lines

WRITE=0; // Initialize control
READn=1; // Outputs Here

while (1) // Loop forever
 {if (RXFn == 0) // Is there a character available
 {read_byte(); // Yes, so get it
 send_byte(); // and send it back out
 }
 }
}
Setup and running.

 Place the USB device in an empty breadboard, noting proper pin orientation. If you are using
the USB adapter cable, while it is NOT plugged into a master or PC, plug the proper end into the
breadboard next to the USB245 so that the pin with the Red wire connects to USB245 pin 22, and
the pin with the black wire connects to pin 19. Place a jumper wire between pins 22 & 23 of the
USB245 on the breadboard. At this point only the top-right 6 pins of the USB245 will be attached.
 With nothing else attached to the module, except as noted above, now plug the other end of the
cable into the PC. It should recognize a new USB device a start searching for drivers. When it

asks for the drivers, put the floppy disk sent with the USB245 into the computer’s floppy drive and
tell the setup routine which drive you placed it into (usually A:).
 After it has completed setup, you can find the COM port the USB245 has been assigned, by
clicking on: Start Settings Control Panel, then double click the System Icon Device
Manager Ports (COM &LPT). Here you should see: USB Serial Port (COMn), where n is the
COM port assigned.
 Now that it has been found, unplug the USB cable from the PC. Never unplug the cable from
the USB245 end, while the other end is plugged into a PC or USB master..
 Wire the 8 data lines and 4 status lines to your preprogrammed microcontroller. You can use
the 5V supply from pin 24, and the GND from pin 12 for you microcontroller. Do NOT tie another
5V source to the USB 5V source. RESET# is also available if needed.
 Plug the USB cable back into the PC. The PC should now search for and find the proper driver
software. The PC may ‘freeze’ for about 25 seconds while the software is loaded. The chipset &
driver manufacturer explains that this is normal.
 If the example program listed above was downloaded to your embedded processor, you should
be able to open a COM program like PCPlus, choose the correct COM Port, and start typing in
the data entry area and see you characters show up on the screen. If they show up twice, go to
half-duplex mode.

A very simple Basic program

USB VAR BYTE REM A Place to store the character
 REM I/O 0-7 used for DATA
LOW 8 REM I/O 8 used for WRITE SIGNAL, Start LOW
HIGH 9 REM I/O 9 used for READ SIGNAL, Start HIGH
 REM I/O 10 used for RXF# input
 REM TXE IS NOT CHECKED

10 IF IN10 = 0 THEN REM IF RXF is LOW, there is a char available
 LOW 9 REM make the READ line active LOW
 USB=INL REM read the character
 HIGH 9 REM deactivate the READ line
 DIRL=%11111111 REM set PORT for OUTPUT
 HIGH 8 REM strobe the WRITE line HIGH
 OUTL=USB REM output the character
 LOW 8 REM bring the strobe back LOW LOW
 DIRL=%00000000 REM set PORT for INPUT
 END
GOTO 10

1 2 3 4

A

B

C

D

4321

D

C

B

A
Title

Number RevisionSize

A

Date: 5-Dec-2002 Sheet of
File: C:\Designs\stamps.ddb Drawn By:

SD7
4

SD6
5

SD5
6

SD4
7

SD3
8

SD2
9

SD1
10

SD0
11

GND
12

GND
19

RXCLK
13

RXF#
14

RESET#
15

READ#
16

WRITE
17

TXE#
18

DP
20

DM
21

USB_VCC
22

FILTER_VCC
23

VCC
24

U2

USB245

VCC0
1

DATAO-
2

DATA0+
3

GND0
4

GND
5

J1

GND
1

RTCC
2

VCC
3

VCC
4

RA0
5

RA1
6

RA2
7

RA3
8

RB0
9

RB1
10

RB2
11

RB3
12

RB4
13

GND
14

RB5
15

RB6
16

RB7
17

RC0
18

RC1
19

RC2
20

RC3
21

RC4
22

RC5
23

RC6
24

RC7
25

OSC2
26

OSC1
27

RESET#
28

U1

SX28AX-SS
GND

VCC

RESET#

13

2

CR1
20 MHz Resonator

GND
OSC1
OSC2

D0
D1
D2
D3
D4
D5
D6
D7

RESET#

READ#
WRITE
RXF#
TXE#

READ#
WRITE
RXF#
TXE#

VCC

GND

GND

PORTB on SX28 for other I/O

USB245 Demo Schematic

C1

VCC

GND

SOUT
1

SIN
2

ATN
3

VSS
4

P0
5

P1
6

P2
7

P3
8

P4
9

P5
10

P6
11

P7
12

P8
13

P9
14

P10
15

P11
16

P12
17

P13
18

P14
19

P15
20

VDD
21

RES#
22

VSS
23

VIN
24

U4
BS2-IC

SD7
4

SD6
5

SD5
6

SD4
7

SD3
8

SD2
9

SD1
10

SD0
11

GND
12

GND
19

RXCLK
13

RXF#
14

RESET#
15

READ#
16

WRITE
17

TXE#
18

DP
20

DM
21

USB_VCC
22

FILTER_VCC
23

VCC
24

U3

USB245

VCC0
1

DATAO-
2

DATA0+
3

GND0
4

GND
5

J1

READ#
WRITE
RXF#
TXE#

VCC

GND

GND

GND

GND VCC
P0
P1
P2
P3
P4
P5
P6
P7

P0
P1
P2
P3
P4
P5
P6
P7

READ#
WRITE

RXF#
TXE#

SX28

BS2-IC

RED
WHITE
GREEN
BLACK

RED
WHITE
GREEN
BLACK

