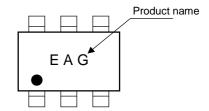

TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7PA53FU

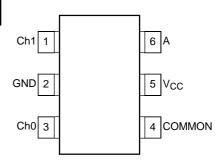
2-Channel Multiplexer/Demultiplexer

Features

- Ultra-high speed operation: $t_{pd} = 0.4 \text{ ns (max)}$ @VCC = 3.6 V, $C_{L} = 30 \text{ pF}$
- Ultra-low on resistance: $R_{ON} = 21 \Omega \text{ (max) @V_{CC}} = 3.6 \text{ V}$
- Operating voltage range: $V_{CC \text{ (opr)}} = 1.8 \text{ to } 3.6 \text{ V}$
- High latch-up immunity: Higher than or equal to ± 500 mA
- High ESD: Higher than or equal to ± 200 V (JEITA) : Higher than or equal to ± 2000 V (MIL)
- Power-down protection provided on all input pins

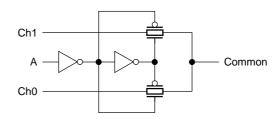


Weight: 0.0068 g (typ.)


Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Power supply vo	Power supply voltage		-0.5 to 4.6	V	
DC input voltage)	V _{IN}	-0.5 to 4.6	V	
Switch I/O voltage	Switch I/O voltage		-0.5 to $V_{CC} + 0.5$	V	
Clamp diode	Control input block	luz	-50	mA	
current	Switch block	IIK	±50		
Switch through of	Switch through current		100	mA	
Power dissipation		P _D	200	mW	
DC V _{CC} /ground current		Icc	±100	mA	
Storage tempera	ature	T _{stg}	-65 to 150	°C	

Marking


Pin Assignment (top view)

Truth Table

Input	On Channel
Α	On Channel
L	Ch0
Н	Ch1

System Diagram

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	1.8 to 3.6	V
Control input voltage	V _{IN}	0 to 3.6	V
Switch I/O voltage	Vs	0 to V _{CC}	V
Operating temperature	T _{opr}	-40 to 85	°C
Control input rise and fall time	d _t /d _V	0 to 10	ns/V

DC Electrical Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

Characteristics		Symbol Test Condition		,	Min	Max	Unit
		Cymbol	rest condition	V _{CC} (V)	IVIIII	IVIAX	Offic
	High level	V _{IH}		1.8	0.75 × V _{CC}		V
Input voltage	rigii ievei			2.3 to 3.6	0.7 × V _{CC}		
input voitage	Low level	VIL		1.8	1	0.25 × V _{CC}	
	Low level	VIL		2.3 to 3.6		0.3 × V _{CC}	
			$V_{IN} = 0 \text{ V}, I_O = 24 \text{ mA}$	3.6		19	Ω
			$V_{IN} = 1.9 \text{ V}, I_O = -24 \text{ mA}$	3.6		18	
		R _{ON}	$V_{IN} = 3.6 \text{ V}, I_O = -24 \text{ mA}$	3.6	_	16	
On resistance			V _{IN} = 0 V, I _O = 24 mA	3.0	_	21	
$V_{I/O} = V_{CC}$ or GND	•		$V_{IN} = 3 \text{ V, } I_O = -24 \text{ mA}$	3.0	_	17	
VI/O = VCC OF GIAE	ANO = ACC OL GIND		V _{IN} = 0 V, I _O = 18 mA	2.3	_	25	
			$V_{IN} = 2.3 \text{ V}, I_{O} = -18 \text{ mA}$	2.3	_	20	
			V _{IN} = 0 V, I _O = 6 mA	1.8	_	32	
			V _{IN} = 1.8 V, I _O = -6 mA	1.8	_	26	
			$0 < V_{IN} < 3.6 \text{ V}, I_O = 24 \text{ mA}$	3.6	_	21	
On resistance $V_{I/O} = V_{CC}$ to GND		R _{ON}	$0 < V_{IN} < 3 \text{ V}, I_O = 24 \text{ mA}$	3.0	_	23	Ω
			$0 < V_{IN} < 2.3 \text{ V}, I_O = 18 \text{ mA}$	2.3		42	
			$0 < V_{IN} < 1.8 \text{ V}, I_O = 6 \text{ mA}$	1.8		140	
Control input leaka	ge current	I _{IN}	V _{IN} = 0 to 3.6 V	3.6	_	±5.0	μΑ
Switch I/O leakage current		I _{SZ}	V _{IN} = 0 to 3.6 V	3.6	_	10.0	μΑ
Quiescent supply current		Icc	V _{IN} = V _{CC} or GND	3.6	_	20.0	^
Increase in I _{CC} per Input		Δl _{CC}	V _{IH} = 3 V	3.6		750	μА

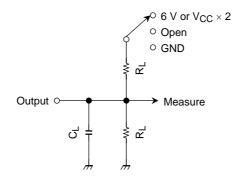
AC Characteristics (Ta = -40°C to 85°C, input $t_r = t_f = 2.0$ ns, $C_L = 30$ pF, $R_L = 500$ Ω)

Characteristics	Symbol	Test Condition		Min	Max	Unit
Characteristics	Зуппоог	rest Condition	V _{CC} (V)	IVIIII		
Propagation delay time (Note 12)	t _{pLH}		1.8	_	0.7	ns
			2.5 ± 0.2	_	0.55	
			3.3 ± 0.3	_	0.4	
	t _p ZL t _p ZH	_	1.8	_	9	ns
Output enable time			2.5 ± 0.2	_	7	
			3.3 ± 0.3	_	5	
Output disable time	t _{pLZ}	_	1.8	_	9	
			2.5 ± 0.2	_	7	ns
			3.3 ± 0.3	_	5	

When $C_L = 50$ pF, add approximately 300 ps to the maximum values above.

Note 12: The propagation delay time is the calculated RC time constant of the typical on-state resistance of the switch and a load capacitance.

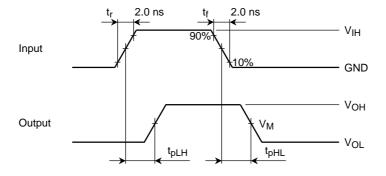
Capacitive Characteristics (Ta = 25°C)


Characteristics	Symbol	Test Condition		V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}	_		1.8, 2.5, 3.3	3.0	pF
Power dissipation capacitance	C _{PD}	$f_{IN} = 10 \text{ MHz}$	(Note 13)	1.8, 2.5, 3.3	5.5	pF

Note 13: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr.)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$


Figure 1 AC Test Circuit

Characteristics	Switch		
t _{pLH} , t _{pHL}	Open		
	6 V	@ $V_{CC} = 3.3 \pm 0.3 \text{ V}$	
t _{pLZ} , t _{pZL}	V22 x 2	@ $V_{CC} = 2.5 \pm 0.2 \text{ V}$	
	V _{CC} × 2	$@ V_{CC} = 1.8 V$	
t _{pHZ} , t _{pZH}	GND		

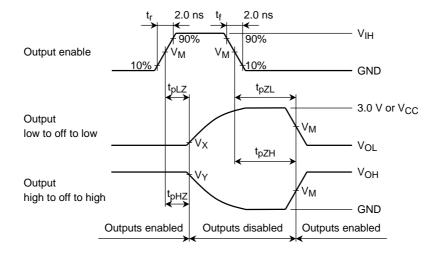
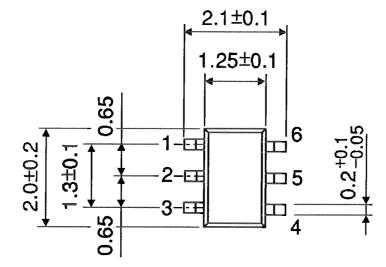
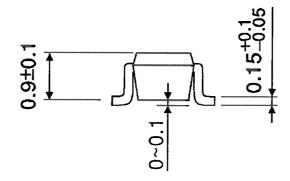

AC Waveforms

Figure 2 t_{pLH} , t_{pHL}

5 2002-08-21

 $\textbf{Figure 3} \quad t_{\text{pLZ}}, t_{\text{pHZ}}, t_{\text{pZL}}, t_{\text{pZH}}$


Symbol	Vcc				
Symbol	$3.3\pm0.3~\textrm{V}$	$2.5\pm0.2\textrm{V}$	1.8 V		
V _{IH}	2.7 V	V _{CC}	V _{CC}		
V _M	1.5 V	V _{CC/2}	V _{CC/2}		
VX	V _{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.15 V		
VY	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.15 V		


6 2002-08-21

Package Dimensions

SSOP6-P-0.65A

Unit: mm

7

Weight: 0.0068 g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.

8

The information contained herein is subject to change without notice.