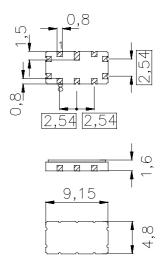


Data Sheet B5035

SAW Components B5035
Low-Loss Filter 208,0 MHz

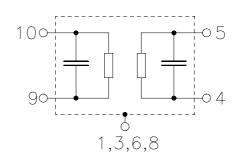
Data Sheet


Features

- IF low-loss filter for W-CDMA base station
- Usable bandwidth 3,84 MHz
- Balanced or unbalanced operation possible
- Temperature stable
- Ceramic SMD package

Terminals

Gold plated


Ceramic package QCC10B

Dimensions in mm, appr. weight 0,23 g

Pin configuration

10, 9	Input
5, 4	Output
1, 3, 6, 8	Case ground
2.7	To be arounded

Туре	Ordering code	Marking and Package according to	Packing according to
B5035	B39211-B5035-Z710	C61157-A7-A49	F61074-V8172-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	-40 / +85	°C
Storage temperature range	$T_{\rm stg}$	-40 / +85	°C
DC voltage	$V_{\rm DC}^{\rm sig}$	0	V
Source power	$P_{\rm s}$	0	dBm

Low-Loss Filter 208,0 MHz

Data Sheet

Characteristics

Operating temperature range: $T = +5 \dots +75 \,^{\circ}\text{C}$

Terminating source impedance: $Z_{\rm S}=200~\Omega$ balanced and matching network Terminating load impedance: $Z_{\rm L}=200~\Omega$ balanced and matching network

			min.	typ.	max.	
Nominal frequency		f_{N}	_	208,0		MHz
Minimum insertion attenuation		α_{min}	_	11	13	dB
Passband width	$\alpha_{rel} \le 1 \text{ dB}$	B _{1dB}	_	4,2	_	MHz
Amplitude ripple (p-p)	$f_{ m N}$ \pm 1,92 MHz	Δα	_	0,6	1,0	dB
Phase ripple (p-p)	f _N ± 1,92 MHz	Δφ	_	5	_	0
Phase ripple (rms)	f _N ± 1,92 MHz	Δφ	_	1,1	1,5	•
Error vector magnitude		EVM	_	2,6	6,0	%
Absolute group delay (mean within $f_N \pm 1.92 \text{ MHz}$)		τ_{mean}	1,129	1,134	1,139	μs
Relative attenuation (relative to $G_N \pm 2.515 \text{MHz} \dots f_N \pm 6.515 \text{MHz} \dots f_N \pm 6.5$	± 2,6 MHz ± 2,8 MHz ± 3,3 MHz ± 20 MHz ± 28 MHz	$lpha_{ m rel}$	17 25 30 40 ¹⁾ 45 55 ²⁾	20 30 35 45 50 60		dB dB dB dB dB dB
Temperature coefficient of frequency	uency ³⁾	TC _f	_	- 0,036	_	ppm/K ²
Turnover temperature		T_0	_	20	_	°C

¹⁾ Except for two narrow-band responses between 219 and 222 MHz which may reach 2 dB above

²⁾ Except for two narrow-band responses between 236 and 240 MHz which may reach 2 dB above

³⁾ Temperature dependance of f_c : $f_c(T_A) = f_c(T_0)(1 + TC_f(T_A - T_0)^2)$

Low-Loss Filter 208,0 MHz

Data Sheet

Characteristics

Operating temperature range: $T = -40 \dots +85 \,^{\circ}\text{C}$

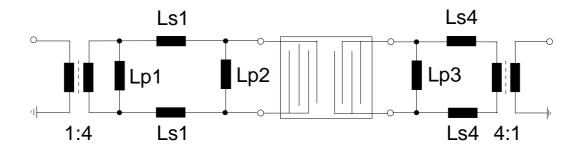
Terminating source impedance: $Z_{\rm S}=200~\Omega$ balanced and matching network Terminating load impedance: $Z_{\rm L}=200~\Omega$ balanced and matching network

		min.	typ.	max.	
Nominal frequency		_	208,0	_	MHz
Minimum insertion attenuation		_	11	13,2	dB
	B _{1dB}	_	4,2	_	MHz
Amplitude ripple (p-p) $f_{\rm N} \pm 1,92 {\rm MHz}$	Δα	_	0,6	1,2	dB
Phase ripple (p-p) $f_{\rm N} \pm 1,92 {\rm MHz}$	Δφ	_	5	_	۰
Phase ripple (rms) $f_{\rm N} \pm 1,92 {\rm MHz}$	Δφ	_	1,1	1,5	۰
Error vector magnitude	EVM	_	2,6	6,0	%
Absolute group delay (mean within $f_N \pm 1,92$ MHz) τ _{mean}	1,129	1,134	1,139	μs
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	α _{rel}	17 25 30 40 ¹⁾ 45 55 ²⁾ 45	20 30 35 45 50 60	- - - - -	dB dB dB dB dB dB
Temperature coefficient of frequency 3)	TC _f	_	- 0,036	_	ppm/K ²
Turnover temperature	T_0	_	20		°C

¹⁾ Except for two narrow-band responses between 219 and 222 MHz which may reach 2 dB above

²⁾ Except for two narrow-band responses between 236 and 240 MHz which may reach 2 dB above

 $^{^{3)}}$ Temperature dependance of $f_{\rm c}$: $f_{\rm c}(T_{\rm A}) = f_{\rm c}(T_0)(1 + TC_{\rm f}(T_{\rm A} - T_0)^2)$



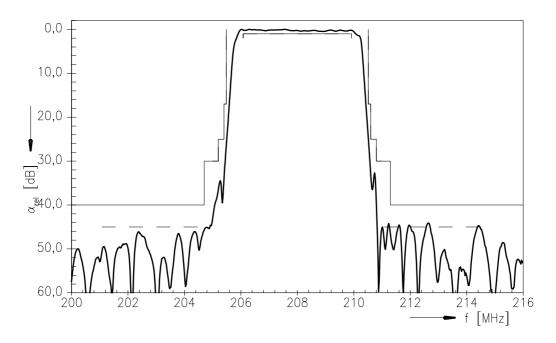
Low-Loss Filter 208,0 MHz

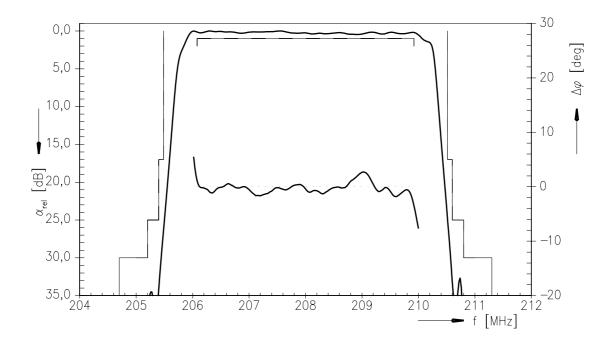
Data Sheet

Matching network to 200 $\boldsymbol{\Omega}$

Transformers are only required for measurement in a 50 Ω environment

 $\begin{aligned} L_{s1} &= 100 \text{ nH} & L_{p3} &= 150 \text{ nH} \\ L_{p2} &= 100 \text{ nH} & L_{s4} &= 150 \text{ nH} \\ L_{p1} &= 560 \text{ nH (for trimming)} \end{aligned}$


Element values depend upon board layout.


SAW Components B5035
Low-Loss Filter 208,0 MHz

Data Sheet

Transfer function

Transfer function (pass band)

Low-Loss Filter 208,0 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW COM P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2005. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.