Single Bus Switch with Level Shifting

The TC7SBD385FU provides single bit of high-speed TTL-compatible switching. The low on resistance of the switch allows connections to be made with minimal propagation delay.

The device is organized as just 1-bit low-impedance switch with output-enable (OE) input. When OE is high, the switch is on and data can flow from port A to port B, or vice versa. When OE is low, the switch is open and a high-impedance state exists between the two ports.

The internal diode which adds to power supply line is enable to realize the shift of signal level from 5 V to 3.3 V .

All inputs are equipped with protection circuits against static

Weight: 0.006 g (typ.) discharge.

Features

- Operating voltage: VCC $=4.5 \sim 5.5 \mathrm{~V}$
- High speed operation: $\mathrm{t}_{\mathrm{pd}}=0.25 \mathrm{~ns}$ (\max)
- Low on resistance: RON $=5 \Omega$ (typ.)
- ESD performance: Machine model $> \pm 200 \mathrm{~V}$

$$
\text { Human body model }> \pm 2000 \mathrm{~V}
$$

- TTL level input (control input)
- Package: USV

Pin Assignment (top view)

[^0]
Truth Table

Input	Function
OE	
L	Disconnect
H	A port $=$ B port

System Diagram

Maximum Ratings

Characteristics	Symbol	Rating	Unit
Power supply range	V_{CC}	$-0.5 \sim 7.0$	V
DC input voltage	V_{IN}	$-0.5 \sim 7.0$	V
DC switch voltage	V_{S}	$-0.5 \sim 7.0$	V
Input diode current	I_{IK}	-50	mA
Continuous channel current	I_{S}	128	mA
Power dissipation	P_{D}	200	mW
DC $\mathrm{V}_{\mathrm{CC}} / G N D$ current	$\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}$	± 100	mA
Storage temperature	$\mathrm{T}_{\text {stg }}$	$-65 \sim 150$	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit
Supply voltage	V_{CC}	$4.5 \sim 5.5$	V
Input voltage	V_{IN}	$0 \sim 5.5$	V
Switch voltage	V_{S}	$0 \sim 5.5$	V
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	$-40 \sim 85$	${ }^{\circ} \mathrm{C}$
Input rise and fall time	$\mathrm{dt} / \mathrm{dv}$	$0 \sim 10$	$\mathrm{~ns} / \mathrm{V}$

Electrical Characteristics

DC Characteristics ($\mathrm{Ta}=-\mathbf{4 0} \sim 85^{\circ} \mathrm{C}$)

Characteristics		Symbol	Test Condition		Vcc (V)	Min	Typ. (Note1)	Max	Unit
Input voltage	"H" level	V_{IH}	-		4.5~5.5	2.0	-	-	V
	"L" level	$\mathrm{V}_{\text {IL }}$	-		4.5~5.5	-	-	0.8	
High-level output voltage		V_{OH}	Figure 4		-	-	-	-	-
Input leakage current		IIN	$\mathrm{V}_{\mathrm{IN}}=0 \sim 5.5 \mathrm{~V}$		5.5	-	-	± 1.0	$\mu \mathrm{A}$
Off-state leakage current (switch off)		ISZ	$\mathrm{A}, \mathrm{B}=0 \sim 5.5 \mathrm{~V}, \mathrm{OE}=\mathrm{GND}$		5.5	-	-	± 1.0	$\mu \mathrm{A}$
ON resistance	(Note2)	RON	$\mathrm{V}_{\text {IS }}=0 \mathrm{~V}$	$\mathrm{IIS}^{\text {S }}=30 \mathrm{~mA}$	4.5	-	5	7	Ω
				$\mathrm{I}_{\mathrm{I}}=64 \mathrm{~mA}$	4.5	-	5	7	
			$\mathrm{V}_{\text {IS }}=2.4 \mathrm{~V}, \mathrm{I}_{\text {IS }}=15 \mathrm{~mA}$		4.5	-	35	50	
Quiescent supply current		Icc	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ & \mathrm{I}_{\text {OUT }}=0 \end{aligned}$	Switch ON	5.5	-	-	1.5	mA
		Switch OFF		5.5	-	-	10	$\mu \mathrm{A}$	
		$\Delta \mathrm{l}$ CC	$\mathrm{VIN}=3.4 \mathrm{~V}$ (one input) (Note3)		5.5	-	-	2.5	mA

Note1: Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{Ta}=25^{\circ} \mathrm{C}$.
Note2: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

Note3: Quiescent supply current at $\mathrm{V}_{\mathrm{CC}}=3.4 \mathrm{~V}$ will be sum of I_{CC} and $\Delta \mathrm{I} \mathrm{CC}$.
AC Characteristics $\left(\mathrm{Ta}=-40 \sim 85^{\circ} \mathrm{C}\right)$

Characteristics	Symbol	Test Condition			Min	Max	Unit
Propagation delay time (bus to bus)	$\begin{array}{r} \mathrm{t}_{\mathrm{pLH}} \\ \mathrm{t}_{\mathrm{pHL}} \\ \hline \end{array}$	Figure 1, Figure 2	(Note4)	4.5	-	0.25	ns
Output enable time	$\begin{array}{r} \hline \mathrm{t}_{\mathrm{pzL}} \\ \mathrm{t}_{\mathrm{pzH}} \\ \hline \end{array}$	Figure 1, Figure 3		4.5	-	4.5	ns
Output disable time	$\begin{aligned} & \mathrm{t}_{\mathrm{pLLZ}} \\ & \mathrm{t}_{\mathrm{pHZ}} \end{aligned}$	Figure 1, Figure 3		4.5	-	5.0	ns

Note4: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical on resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage the source (zero output impedance).

Capacitive Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Condition			Typ.	Unit
				$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$		
Control pin input capacitance	$\mathrm{C}_{\text {IN }}$		(Note5)	5.0	3	pF
Switch terminal capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$	$\mathrm{OE}=\mathrm{GND}$	(Note5)	5.0	10	pF

Note5: This item is guaranteed by design.

AC Test Circuit

Parameter	Switch
$\mathrm{t}_{\mathrm{pLH}}, \mathrm{t}_{\mathrm{pHL}}$	Open
$\mathrm{t}_{\mathrm{pLZ}}, \mathrm{t}_{\mathrm{pZL}}$	7.0 V
$\mathrm{t}_{\mathrm{pHZ}}, \mathrm{t}_{\mathrm{p} Z \mathrm{H}}$	Open

Figure 1

AC Waveform

Figure $2 \mathbf{t}_{\mathrm{pLH}}, \mathrm{t}_{\mathrm{pHL}}$

Figure $3 \mathbf{t}_{\mathrm{pLZ}}, \mathrm{t}_{\mathrm{pHz}}, \mathrm{t}_{\mathrm{pZL}}, \mathrm{t}_{\mathrm{pZH}}$

$\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{cc}}$ Characteristics (typ.)

Figure 4

Package Dimensions

SSOP5-P-0.65A Unit : mm

Weight: 0.006 g (typ.)

[^0]: - TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
 - The products described in this document are subject to the foreign exchange and foreign trade laws.
 - The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 - The information contained herein is subject to change without notice.

