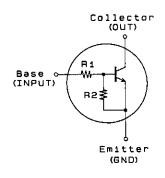
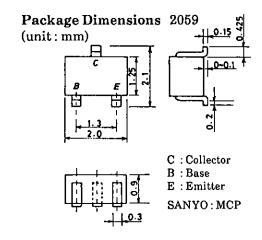


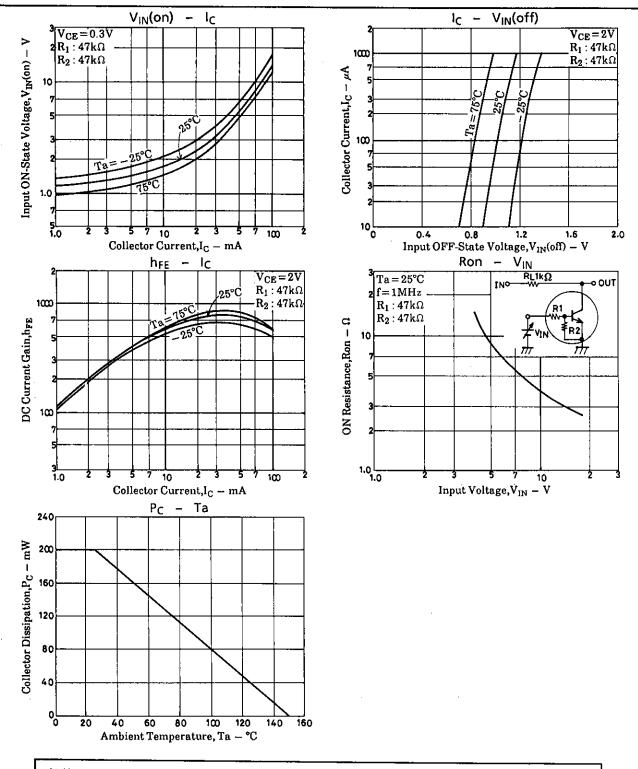
No.4410

NPN Epitaxial Planar Silicon Transistor

Muting Circuits, Drivers


Features


- · High DC current gain.
- On-chip bias resistance ($R_1 = 47k\Omega$, $R_2 = 47k\Omega$).
- \cdot Very small-sized package permitting 2SC4909-applied sets to be made smaller and slimmer.
- · Small ON resistance.


Absolute Maximum Ratings at Ta = 25°C					unit	
Collector to Base Voltage	V_{CBO}			25	V	
Collector to Emitter Voltage	V_{CEO}			20	V	
Emitter to Base Voltage	V_{EBO}			10	V	
Input Voltage	VIN			18	V	
Collector Current	$I_{\mathbf{C}}$			100	mA	
Collector Current (Pulse)	I _{CP}			200	mA	
Base Current	IB			20	mA	
Collector Dissipation	$\tilde{P_C}$			200	mW	
Junction Temperature	Tj			150	$^{\circ}\mathrm{C}$	
Storage Temperature	Tstg	•	-55 to +		°C	
Electrical Characteristics at Ta =	25°C		min	typ	max	unit
Collector Cutoff Current	I_{CBO}	$V_{CB} = 20V_{IE} = 0$		• •	0.1	μ A
Collector Cutoff Current	I_{CEO}	$V_{CE} = 15V, I_{B} = 0$			0.5	μ A
Emitter Cutoff Current	IEBO	$V_{EB} = 5V, I_C = 0$	30	53	80	μ A
DC Current Gain	hFE	$V_{CE} = 2V_{IC} = 5mA$	200			•
Gain-Bandwidth Product	$\mathbf{f_T}$	$V_{CE} = 5V, I_{C} = 10mA$		240		MHz
C-E Saturation Voltage	$V_{CE(sat)}$	$I_C = 2mA, I_B = 0.2mA$		10	30	mV
C-B Breakdown Voltage	V _{(BR)CBO}	$I_C = 10 \mu A, I_E = 0$	25			V
C-E Breakdown Voltage		$I_C = 1 \text{mA}, R_{BE} = \infty$	20			V
Input OFF-State Voltage		$V_{CE} = 2V_{IC} = 100 \mu A$	0.7	1.0	1.4	V
Input ON-State Voltage		$V_{CE} = 0.3V_1I_C = 5mA$	1.0	1.5	3.0	V
Input Resistance	R_1		32	47	62	$\mathbf{k}\Omega$
Resistance Ratio	R_1/R_2		0.9	1.0	1.1	
ON Resistance	Ron	$V_{IN} = 10V, f = 1MHz$		4.0		Ω

Marking: JN

Electrical Connection

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.