# HYBRID V.H.F./U.H.F. WIDE-BAND AMPLIFIER

Three-stage wide-band amplifier in the hybrid technique, designed for use in MATV systems, and as general purpose amplifier for v.h.f. and u.h.f. applications requiring a high output level. The OM337A needs an external collector-coil and blocking capacitor, whereas, the OM337 has these components built-in.

# QUICK REFERENCE DATA

| Frequency range                                                                   | f                              | 40     | to 860 MHz |
|-----------------------------------------------------------------------------------|--------------------------------|--------|------------|
| Source and load (characteristic) impedance                                        | $R_S = R_{\ell} = Z_O$         | =      | 75 Ω       |
| Transducer gain                                                                   | $G_{tr} =  s_f ^2$             | typ.   | 26 dB      |
| Flatness of frequency response                                                    | $\pm \Delta \mid_{s_f} \mid 2$ | typ.   | 1 dB       |
| Output voltage at60 dB intermodulation distortion (DIN45004, 3-tone); f = 470 MHz | V <sub>o(rms)</sub>            | tγp.   | 112 dBµV   |
| Noise figure                                                                      | F                              | typ.   | 9,8 dB     |
| D.C. supply voltage                                                               | v <sub>B</sub>                 | =      | 24 V ± 10% |
| Operating mounting-base temperature                                               | T <sub>mb</sub>                | _30 to | +100 °C    |
|                                                                                   |                                |        |            |

**ENCAPSULATION** 9-pin, in-line, resin-coated body on a right-angled metal mounting tab, see MECHANICAL DATA

# OM337 OM337A TR1 TR2 TR3 TR3 72753221

Fig. 1 Circuit diagram.

| RATINGS Limiting values in accordance with the Absolute Maxim | um System (IE                             | C134)          |          |          |
|---------------------------------------------------------------|-------------------------------------------|----------------|----------|----------|
| Operating mounting-base temperature                           | T <sub>mb</sub>                           | -30 to +       | 100      | оС       |
| Storage temperature                                           | $T_{stg}$                                 | -40 to +       | 125      | οС       |
| D.C. supply voltage                                           | V <sub>B</sub>                            | max.           | 28       | ٧        |
| Peak voltages on pin 1                                        | V <sub>1M</sub><br>-V <sub>1M</sub>       | max.<br>max.   | 28<br>24 |          |
| Peak voltages on pin 9                                        | ∨ <sub>9М</sub><br>–∨ <sub>9М</sub>       | max.<br>max.   | 28<br>4  | V<br>V   |
| Peak incident powers on pins 1 and 9                          | P <sub>I1M</sub> , P <sub>I9M</sub>       | max.           | 100      | mW       |
| CHARACTERISTICS                                               |                                           |                |          |          |
| Measuring conditions                                          |                                           |                |          |          |
| V.H.FU.H.F. test socket                                       | catalogue no. 3504 110 01830*             |                |          | 330*     |
| Mounting base temperature                                     | T <sub>mb</sub>                           | =              | 25       | oC       |
| D.C. supply voltage                                           | $V_{B}$                                   | =              | 24       | ٧        |
| Source impedance and load impedance                           | R <sub>s</sub> , Rℓ                       | =              | 75       | $\Omega$ |
| Characteristic impedance of h.f. connections                  | z <sub>o</sub>                            | =              | 75       | Ω        |
| Frequency range                                               | f                                         | = 40 to        | 860      | MHz      |
| Performance                                                   |                                           |                |          |          |
| Supply current                                                | IB                                        | 110 to<br>typ. |          | mA<br>mA |
| Transducer gain                                               | $G_{tr} =  s_f ^2$                        | 23 to<br>typ.  |          | dB<br>dB |
| Flatness of frequency response                                | $\pm \Delta \mid s_f \mid 2$              | typ.           | 1        | dB       |
| Individual maximum v.s.w.r.                                   |                                           |                |          |          |
| input                                                         | VSWR(i)                                   | typ.           | 2,3      | **       |
| output                                                        | VSWR <sub>(o)</sub>                       | typ.           | 1,8      | • •      |
| Back attenuation f = 100 MHz                                  | s <sub>r</sub>   2                        | typ.           | 44       | dB       |
| f = 650 MHz                                                   | s <sub>r</sub>   2<br> s <sub>r</sub>   2 | typ.<br>typ.   |          | dB       |
| f = 860 MHz                                                   | s <sub>r</sub>   2                        | typ.           | 43       | dB       |
|                                                               |                                           |                |          |          |

<sup>\*</sup> This socket can be made available for customer reference purposes.

<sup>\*\*</sup> Highest value, for a sample, occurring in the frequency range.

| Output voltage  at -60 dB intermodulation d | distortion    |                                  |                                  |      |     |      |
|---------------------------------------------|---------------|----------------------------------|----------------------------------|------|-----|------|
| (DIN45004, par. 6.3: 3-tone                 | )             |                                  | V ,                              | >    |     | dΒμV |
| f = 40–230 MHz                              |               |                                  | V <sub>o(rms)</sub>              | typ. |     | dΒμV |
| f = 470 MHz                                 |               |                                  | $V_{o(rms)}$                     |      |     | dΒμV |
| f = 860 MHz                                 |               |                                  | V <sub>o(rms)</sub>              | typ. | 110 | dΒμV |
| Noise figure<br>channel 2                   |               |                                  | F                                | typ. | 7   | dB   |
| channel 65                                  |               |                                  | F                                | typ. | 9,8 |      |
|                                             | s-parameters: | s <sub>f</sub> = s <sub>21</sub> | s <sub>i</sub> = s <sub>11</sub> |      |     | •    |
|                                             |               | $s_r = s_{12}$                   | $s_0 = s_{22}$                   |      |     | •    |

# **OPERATING CONDITIONS**

| Mounting-base temperature range     | $\tau_{\sf mb}$  | -30 to | +100  | оС      |
|-------------------------------------|------------------|--------|-------|---------|
| D.C. supply voltage                 | $V_{B}$          | =      | 24    | V ± 10% |
| Frequency range                     | f                | 40 to  | o 860 | MHz     |
| Source impedance and load impedance | $R_s$ , $R_\ell$ | =      | 75    | Ω       |

# THERMAL DATA

- a. The maximum permissible temperature at the mounting base is 100  $^{\rm o}{\rm C}$ .
- b. When the mounting tab is screwed to a double-sided printed-circuit board with dimensions 37 mm x 51 mm, its temperature will be 57 °C above the temperature of the surrounding free air.
- c. When a heatsink is fixed to the mounting tab and the pins are soldered into a double-sided printed-circuit board with dimensions 37 mm x 51 mm, the tab will reach the temperatures stated in the following table.

# Notes:

- 1. When the device is fixed only to a heatsink, not to a printed-circuit board, the values of the second column of the table should be increased by 2 °C and those of the third column decreased by 2 °C.
- 2. The user is free to realize proper cooling by using differently shaped sinks, or, preferably, by fixing the tab to any convenient part of the equipment (e.g. a wall of the metal cabinet).

| heatsink data<br>thickness 1 mm                                          | T <sub>mb</sub> – T <sub>amb</sub> | T <sub>amb max</sub><br>oC |
|--------------------------------------------------------------------------|------------------------------------|----------------------------|
| Bright aluminium heatsink<br>L-shaped bar; length 100 mm, height 65 mm   | 27,5                               | 72,5                       |
| Blackened aluminium heatsink<br>L-shaped bar; length 50 mm, height 70 mm | 26,5                               | 73,5                       |

MECHANICAL DATA

Dimensions in mm

The amplifier is resin coated and has a metal mounting tab at a right angle to the encapsulated part.



- (1) Tolerance applies within this zone.
- (2) Distance applies within zone A.
- (3) For the OM337A: 3 mm maximum.

Fig. 2 Encapsulation.

### Terminal connections

```
1 = Input
2, 3, 5, 6, 7, 8 = Common, connected to mounting tab
4 = Supply (+)
9 = Output
```

# Soldering recommendations

# Hand soldering

Maximum contact time for a soldering-iron temperature of 260 °C up to the seating plane is 5 s.

# Dip or wave soldering

260°C is the maximum permissible temperature of the solder; it must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds. The device may be mounted against the printed-circuit board, but the temperature of the device must not exceed 125°C. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature below the allowable limit.

# Mounting recommendations

The module should preferably be mounted on a double-sided printed-circuit board, see the following example. An example is also given of heatsink mounting.

Input and output should be connected to 75  $\Omega$  tracks.

The connections to the common pins should be as close to the seating plane as possible.



75Ω track 0000 0000 000 75Ω track

OM337A: bottom view.

7278426

 $L>5~\mu H$ ; e.g. catalogue no. 3122 108 20150 or 27 turns enamelled Cu wire (0,3 mm) wound on a ferrite core with a a diameter of 1,6 mm. C>220~pF ceramic capacitor.

Fig. 3 Printed-circuit board holes and tracks for the OM337 and OM337A.



Fig. 5 Input impedance derived from input reflection coefficient s<sub>i</sub>, co-ordinates in ohm x 75; typical values.



Fig. 6 Output impedance derived from output reflection coefficient s<sub>o</sub>, co-ordinates in ohm x 75; typical values.



Fig. 7 Transducer gain as a function of frequency.