

Data Sheet January 2000 File Number 2780.4

8A, 1000V Ultrafast Diodes

The MUR8100E and RUR8100 are ultrafast diodes (t_{rr} < 75ns) with soft recovery characteristics. They have a low forward voltage drop and are of planar, silicon nitride passivated, ion-implanted, epitaxial construction.

These devices are intended for use as energy steering/ clamping diodes and rectifiers in a variety of switching power supplies and other power switching applications. Their low stored charge and ultrafast recovery with soft recovery characteristics minimize ringing and electrical noise in many power switching circuits, thus reducing power loss in the switching transistor.

Formerly developmental type TA09617.

Ordering Information

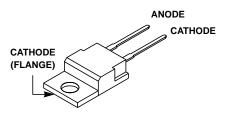
PART NUMBER	PACKAGE	BRAND	
MUR8100E	TO-220AC	MUR8100	
RURP8100	TO-220AC	RURP8100	

NOTE: When ordering, use entire part number.

Symbol

Features

•	Ultrafast with Soft Recovery<7	5ns
•	Operating Temperature	o _C
•	Reverse Voltage)0V


- Avalanche Energy Rated
- Planar Construction

Applications

- · Switching Power Supply
- · Power Switching Circuits
- · General Purpose

Packaging

JEDEC TO-220AC

Absolute Maximum Ratings T_C = 25°C, Unless Otherwise Specified

	MUR8100E RURP8100	UNITS
Peak Repetitive Reverse VoltageV _{RRM}	1000	V
Working Peak Reverse Voltage	1000	V
DC Blocking VoltageV _R	1000	V
Average Rectified Forward Current $I_{F(AV)}$ ($T_C = 155^{\circ}C$)	8	Α
Repetitive Peak Surge Current	16	Α
Nonrepetitive Peak Surge Current	100	Α
Maximum Power Dissipation	75	W
Avalanche Energy (See Figures 10 and 11)	20	mJ
Operating and Storage Temperature	-55 to 175	оС

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified.

SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNITS
V _F	I _F = 8A	-	-	1.8	V
	I _F = 8A, T _C = 150 ^o C	-	-	1.5	V
I _R	V _R = 1000V	-	-	100	μΑ
	V _R = 1000V, T _C = 150°C	-	-	500	μΑ
t _{rr}	I _F = 1A	-	-	85	ns
	$I_F = 8A$, $dI_F/dt = 200A/\mu s$	-	-	100	ns
t _a	$I_F = 8A$, $dI_F/dt = 200A/\mu s$	-	50	-	ns
t _b	$I_F = 8A$, $dI_F/dt = 200A/\mu s$	-	30	-	ns
Q _{RR}	$I_F = 8A$, $dI_F/dt = 200A/\mu s$	-	500	-	nC
CJ	V _R = 10V, I _F = 0A	-	30	-	pF
$R_{ heta JC}$		-	-	2.0	°C/W

DEFINITIONS

 V_F = Instantaneous forward voltage (pw = 300 μ s, D = 2%).

 I_R = Instantaneous reverse current.

 t_{rr} = Reverse recovery time at dI_F/dt = 100A/ μ s (See Figure 9), summation of t_a + t_b .

 t_a = Time to reach peak reverse current at dI_F/dt = 100A/ μ s (See Figure 9).

 $t_b = \text{Time from peak } I_{RM} \text{ to projected zero crossing of } I_{RM} \text{ based on a straight line from peak } I_{RM} \text{ through 25\% of } I_{RM} \text{ (See Figure 9)}.$

 Q_{RR} = Reverse recovery charge.

 C_J = Junction Capacitance.

 $R_{\theta JC}$ = Thermal resistance junction to case.

pw = Pulse width.

D = Duty cycle.

Typical Performance Curves

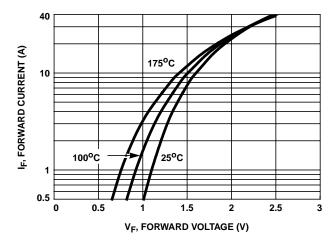


FIGURE 1. FORWARD CURRENT vs FORWARD VOLTAGE

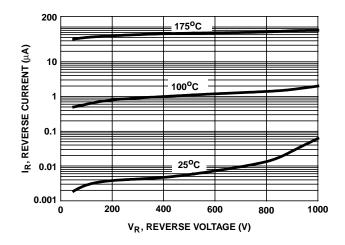


FIGURE 2. REVERSE CURRENT vs REVERSE VOLTAGE

Typical Performance Curves (Continued)

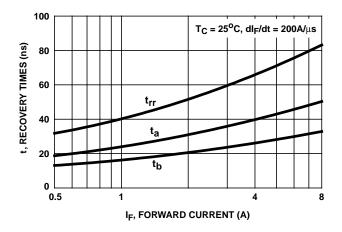


FIGURE 3. t_{rr} , t_a and t_b curves vs forward current

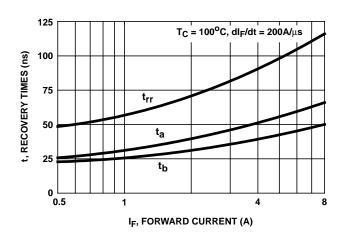


FIGURE 4. t_{rr} , t_a AND t_b CURVES vs FORWARD CURRENT

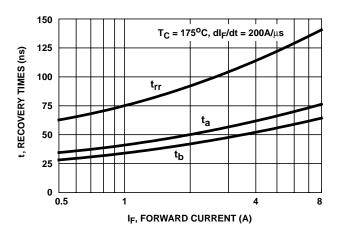


FIGURE 5. t_{rr} , t_a AND t_b CURVES vs FORWARD CURRENT

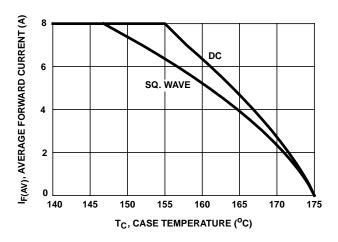


FIGURE 6. CURRENT DERATING CURVE

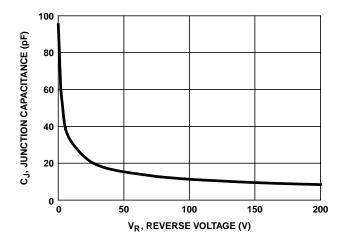


FIGURE 7. JUNCTION CAPACITANCE vs REVERSE VOLTAGE

Test Circuits and Waveforms

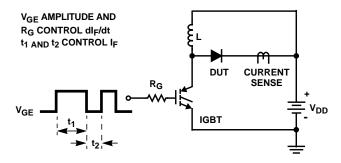


FIGURE 8. t_{rr} TEST CIRCUIT

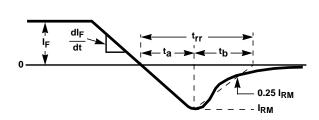


FIGURE 9. t_{rr} WAVEFORMS AND DEFINITIONS

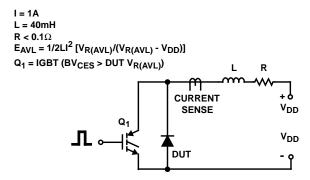


FIGURE 10. AVALANCHE ENERGY TEST CIRCUIT

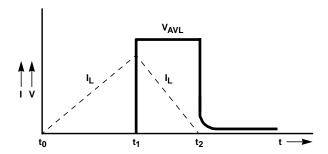


FIGURE 11. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.