L-Band Medium & High Power GaAs FET ## **FEATURES** • Push-Pull Configuration • High Power Output: 120W (Typ.) • High PAE: 44%. • Broad Frequency Range: 1800 to 2000 MHz. • Suitable for class AB operation. ## **DESCRIPTION** The FLL1200IU-2 is a 120 Watt GaAs FET that employs a push-pull design that offers ease of matching, greater consistency and a broader bandwidth for high power L-band amplifiers. This product is targeted to reduce the size and complexity of highly linear, high power base station transmitting amplifiers. This new product is uniquely suited for use in PCS/PCN base station amplifiers as it offers high gain, long term reliability and ease of use. Fujitsu's stringent Quality Assurance Program assures the highest reliability and consistent performance. **ABSOLUTE MAXIMUM RATINGS (Ambient Temperature Ta=25°C)** | Parameter | Symbol | Condition | Rating | Unit | |-------------------------|------------------|-----------|-------------|------| | Drain-Source Voltage | V _{DS} | | 15 | V | | Gate-Source Voltage | V_{GS} | | -5 | V | | Total Power Dissipation | P _T | Tc = 25°C | 187.5 | W | | Storage Temperature | T _{stg} | | -65 to +175 | °C | | Channel Temperature | T _{ch} | | +175 | °C | Fujitsu recommends the following conditions for the reliable operation of GaAs FETs: - 1. The drain-source operating voltage (V_{DS}) should not exceed 12 volts. - 2. The forward and reverse gate currents should not exceed 156.0 and -57.6 mA respectively with gate resistance of 10Ω . - 3. The operating channel temperature (T_{ch}) should not exceed 145°C. ## **ELECTRICAL CHARACTERISTICS (Ambient Temperature Ta=25°C)** | Itam | Cymbol | Conditions | Limits | | | Heit | | |-------------------------------|---------------------|---|--------|------|------|------|--| | Item | Symbol | Conditions | Min. | Тур. | Max. | Unit | | | Drain Current | I _{DSS} | $V_{DS} = 5V$, $V_{GS} = 0V$ | - | 48 | 72 | Α | | | Transconductance | gm | $V_{DS} = 5V, I_{DS} = 28.8A$ | | 24 | - | S | | | Pinch-Off Voltage | V_p | $V_{DS} = 5V$, $I_{DS} = 2.88A$ | -1.0 | -2.0 | -3.5 | V | | | Gate-Source Breakdown Voltage | V_{GSO} | I _{GS} = -2.88mA | | - | - | V | | | Output Power | P _{out} | V _{DS} = 12V | 49.8 | 50.8 | - | dBm | | | Linear Gain | GL | f=1.96 GHz | 10.0 | 11.0 | - | dB | | | Drain Current | I _{DSR} | I _{DS} = 5.0A
Pin = 41.0dBm | - | 20 | 30 | Α | | | Power-Added Efficiency | η_{add} | 1 III = 41.00DIII | - | 44 | - | % | | | Thermal Resistance | R_{th} | Channel to Case | - | 0.6 | 0.8 | °C/W | | **CASE STYLE: IU** # L-Band Medium & High Power GaAs FET #### **OUTPUT POWER vs. FREQUENCY** 2 # L-Band Medium & High Power GaAs FET #### **OUTPUT POWER vs. IMD** #### **S-PARAMETERS** $V_{DS} = 12V, I_{DS} = 2.5A$ | FREQUENCY | S11 | | S | S21 | | S12 | | S22 | | |-----------|------|-------|-------|--------|------|--------|------|-------|--| | (MHZ) | MAG | ANG | MAG | ANG | MAG | ANG | MAG | ANG | | | , | | | | | | | | | | | 1000 | .927 | 170.0 | .410 | 47.9 | .005 | 39.5 | .929 | 170.6 | | | 1100 | .926 | 168.8 | .432 | 42.6 | .006 | 38.5 | .920 | 169.8 | | | 1200 | .922 | 167.2 | .470 | 35.7 | .006 | 37.8 | .917 | 168.7 | | | 1300 | .909 | 165.5 | .526 | 28.6 | .007 | 32.2 | .911 | 167.8 | | | | | | | | | | | | | | 1400 | .893 | 163.7 | .614 | 19.7 | .009 | 24.7 | .907 | 166.9 | | | 1500 | .864 | 161.7 | .738 | 7.5 | .010 | 15.1 | .905 | 166.0 | | | 1600 | .821 | 160.4 | .895 | -8.4 | .011 | 1.8 | .914 | 164.8 | | | 1700 | .765 | 160.1 | 1.084 | -28.3 | .012 | -18.0 | .928 | 163.5 | | | 1800 | .717 | 163.3 | 1.268 | -54.0 | .012 | -46.9 | .940 | 160.2 | | | 1900 | .722 | 168.6 | 1.353 | -81.1 | .011 | -82.5 | .932 | 155.8 | | | 2000 | .786 | 170.8 | 1.320 | -108.9 | .009 | -126.8 | .886 | 151.6 | | | 2100 | .857 | 168.7 | 1.174 | -134.3 | .008 | -175.5 | .821 | 148.8 | | | 2200 | .904 | 164.3 | 1.006 | -156.4 | .009 | 144.7 | .766 | 147.6 | | | 2300 | .929 | 158.9 | .871 | -174.7 | .010 | 114.2 | .728 | 147.3 | | | 2400 | .943 | 153.3 | .751 | 169.0 | .013 | 94.5 | .700 | 146.9 | | | 2500 | .946 | 148.4 | .690 | 158.3 | .015 | 78.5 | .683 | 145.8 | | | 2600 | .938 | 140.8 | .653 | 144.8 | .018 | 67.6 | .662 | 144.2 | | | 2700 | .933 | 131.3 | .647 | 130.6 | .021 | 54.6 | .644 | 141.4 | | | 2800 | .918 | 119.4 | .634 | 113.5 | .025 | 47.4 | .620 | 136.9 | | | 2900 | .903 | 104.1 | .634 | 97.3 | .030 | 31.7 | .591 | 131.2 | | | 3000 | .881 | 83.0 | .558 | 79.7 | .037 | 18.8 | .553 | 123.4 | | | 3000 | .001 | 03.0 | .556 | 13.1 | .037 | 10.0 | .555 | 123.4 | | Note: This S-Parameter data shows measurements performed on a single-ended push-pull FET. These parameters should be used to determine the calculated Push-Pull S-Parameter amplifier designs. # FLL1200IU-2 # L-Band Medium & High Power GaAs FET # For further information please contact: ### FUJITSU COMPOUND SEMICONDUCTOR, INC. 2355 Zanker Rd. San Jose, CA 95131-1138, U.S.A. Phone: (408) 232-9500 FAX: (408) 428-9111 www.fcsi.fujitsu.com ### FUJITSU MICROELECTRONICS, LTD. Compound Semiconductor Division Network House Norreys Drive Maidenhead, Berkshire SL6 4FJ Phone:+44 (0)1628 504800 FAX:+44 (0)1628 504888 ### **CAUTION** Fujitsu Compound Semiconductor Products contain **gallium arsenide (GaAs)** which can be hazardous to the human body and the environment. For safety, observe the following procedures: - Do not put these products into the mouth. - Do not alter the form of this product into a gas, powder, or liquid through burning, crushing, or chemical processing as these by-products are dangerous to the human body if inhaled, ingested, or swallowed. - Observe government laws and company regulations when discarding this product. This product must be discarded in accordance with methods specified by applicable hazardous waste procedures. Fujitsu Limited reserves the right to change products and specifications without notice. The information does not convey any license under rights of Fujitsu Limited or others. © 1998 FUJITSU COMPOUND SEMICONDUCTOR, INC. Printed in U.S.A. FCSI0598M200