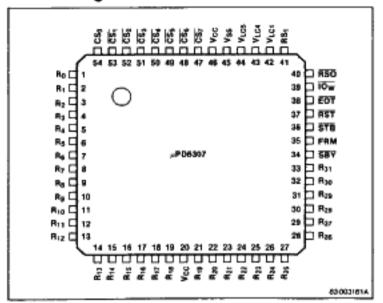


Description

The μ PD6307 can directly drive any multiplexed LCD organized with up to 32 rows. It is easily cascaded to 128 rows.


Features

- ☐ High voltage output 21 V maximum
 ☐ Directly controllable by the µPD72030
- ☐ CMOS technology
- □ Single 5 V ±10% power supply

Ordering Information

Part Number	Package Type
µPD6307G-F	54-pin plastic miniflat
µPD6307G-R	54-pin plastic miniflat (inverted leads)

Pin Configuration

Pin Identification

No.	Symbol	Function
1-19. 21-23	R ₀ -R ₃₁	Row drive output
20	V _{CC}	Positive power supply
34	SBY	Standby input
35	FRM	Frame input
36	STB	Strobe input
37	RST	Reset input
38	EOT	End of transfer input
39	iow	1/0 write input
40, 41	RS ₀ . RS ₁	Row select input
42-44	VLC1, VLC4, VLC5	LCD drive supply
45	V _{SS}	Ground
46	VCC (- VLCO)	Positive power supply and LCD drive supply
47-54	CS7-CS0	Chip select output

Pin Functions

R₀-R₃₁ (Row Drive Output)

LCD row drive output.

CS₀-CS₇ (Chip Select)

Column driver chip select. These outputs are generated by the CS counter and RS0-RS1.

VLC1, VLC4, VLC5 (LCD Drive Supply)

Reference voltages used to drive Ro-R31.

RS₀, RS₁ (Row Select)

This input selects the row driver cascade connection. It enables expansion to 128 row drive outputs and 32 CS outputs, as shown in table 1.

FRM (Frame)

A high level input to this pin displays a positive frame and a low level input displays a negative frame. At the falling or rising edge of the signal, the row counter is cleared and the row driver is started from R₀.

STB (Strobe)

Row drive strobe input. One STB pulse input at the timing interval causes the display of the next row.

IOW (I/O Write)

This input increments the CS counter signal following 10 low level IOW pulses.

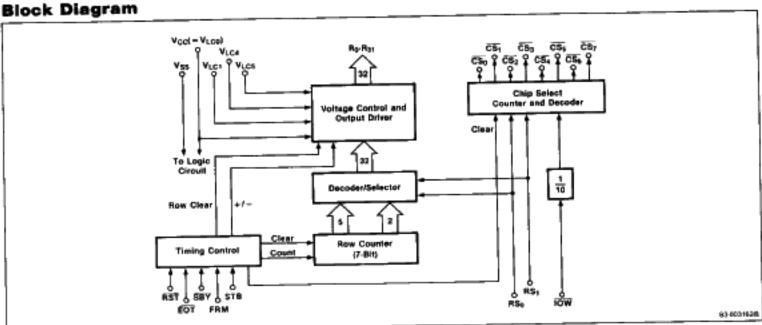
EOT (End of Transfer)

This input clears the CS counter when it goes active low.

RST (Reset)

This is the row driver reset input. A low input clears the internal counter and row outputs Ro-Rat, and sets the CS₀-CS₇ outputs to a high level.

SBY (Standby)


This is the standby input. A low level input to this pin sets the row outputs R₀-R₃₁ to V_{LC0}. Before entering standby mode, set all column driver display data to high level.

V_{CC} (= V_{LC0}) (Power Supply and LCD Drive Supply)

Connect the 5 V power supply between V_{CC} and V_{SS} for logic circuit operation. This pin is also used for the row drive voltage output.

V_{SS} (Ground)

Ground.

Functional Description

Timing Control Circuit

This circuit controls the timing for each internal block. FRM, RS₀, RS₁, RST, and SBY are sampled at the leading edge of STB, and then supplied to other internal circuits.

Row Counter Decoder/Select Circuit

As shown in figure 1, this circuit consists of a 7-bit counter, a comparator, and a 5 to 32 decoder. The 7-bit counter can accommodate 128 rows. The comparator acts to clear R₀-R₃₁ if the upper two bits of the counter do not match RS₀ and RS₁. If they match, one of R₀-R₃₁, indicated by the lower five bits of the row counter, is selected and the rest are cleared. RS₀ and RS₁ allow for cascading as shown in table 1. Table 2 shows the row select logic.

Figure 1. Row Counter Decoder/Select Circuit

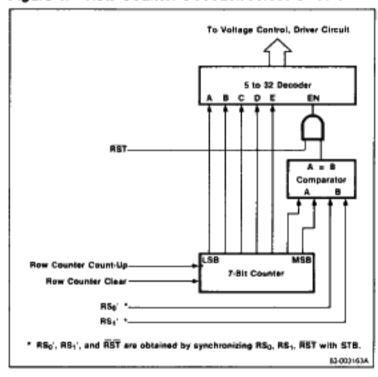


Table 1. RSo and RS1 Row Cascading

RS _O	RS ₁	Row Signal	Chip Select
0	0	R ₀ -R ₃₁	₹\$ ₀ -₹\$ ₇
0	1	R ₃₂ -R ₆₃	CS ₈ -CS ₁₅
1	0	R ₆₄ -R ₉₅	<u>CS₁6-CS₂3</u>
1	1	R ₉₆ -R ₁₂₇	<u>CS</u> 24- CS 31

Table 2. Row Select Logic

EN	£	D	c	В		Selected Row Signal
1	0	0	0	0	0	Ro
1	0	0	0	0	1	R ₁
1	+	+	+	+	+	Rn
1	1	1	1	1	0	R ₃₀
1	1	1	1	1	1	R ₃₁
0	×	X	X	×	×	None

Voltage Control Driver Circuit

This circuit generates the row signals for AC drive of the LCD panel. A low level RST clears the output. A low level SBY sets the output V_{LC0}. Table 2 shows the R₀-R₃₁ output levels.

Table 2. R₀-R₃₁ Outputs Levels

Function	+ (FRM = 1)	- (FRM = 0)
Select	V _{LC5}	V _{LQ0}
Clear	V _{LC4}	V _{LC1}

Chip Select Counter/Decoder Circuit

This circuit, shown in figure 2, generates the column driver \overline{CS} signal. This circuit has a 5-bit counter to generate up to 32 \overline{CS} signals. The 5-bit counter is incremented once for every 10 \overline{IOW} (active low) pulses. If the upper two bits of the chip select counter do not match RS₀ and RS₁, all the $\overline{CS_0}$ - $\overline{CS_7}$ outputs are set to high level. If they match, one of $\overline{CS_0}$ - $\overline{CS_7}$ (indicated by the lower three bits of the chip select counter) goes low. If \overline{RST} is low, $\overline{CS_0}$ - $\overline{CS_7}$ become high level. Table 3 shows the chip select logic.

Figure 2. Chip Select Counter/Decoder Circuit

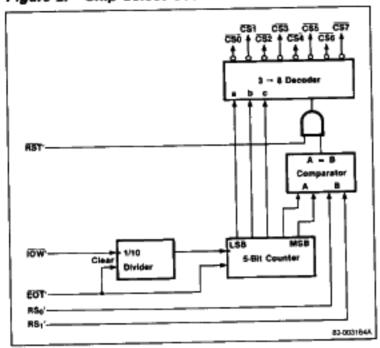


Table 3. Chip Select Logic

EN		b		Chip Select
1	0	0	0	₹S ₀
1	. 0	0	1	Č\$₁
1	0	1	0	CS ₂
1	0	1	1	CS ₃
1	1	0	0	ČS₄
1	1	0	1	₹55
1	1	1	0	Ĉ\$ ₆
1	1	1	1	CS ₇
0	X	Х	Х	Disabled