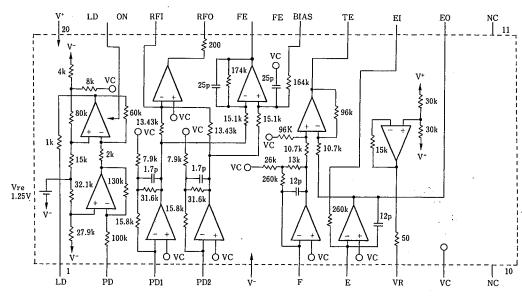
JRC

RF AMPLIFIER FOR CD PLAYER

GENERAL DESCRIPTION

NJM2117 is designed for CD player, which contains RF amplifier for 3 spot system optical PICK-UP output, FOCUS error amplifier and APC circuit.

FEATURES


- Dual Supply ±5V Operation •
- Single Supply +5V Operation Available • SSOP20
- Package Outline •
- Bipolar Technology •

PIN FUNCTION

1. LD	20. V+
2. PD	19. LD ON
3. PD1	18. RF1
4. PD2	17. RFO
5. V-	16. FE
6. F	15. FE BIAS
7. E	14. TE
8. VR	13. EI
9. VC	12. EO
10. NC	11. NC

BLOCK DIAGRAM

5

NJM2117V

PACKAGE OUTLINE

NJM2117V

5-78-

-New Japan Radio Co., Ltd.

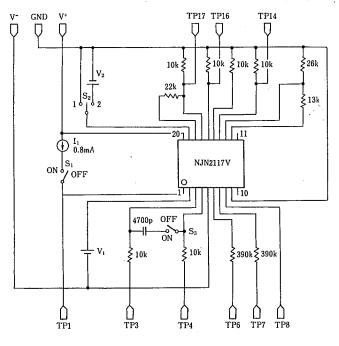
 $(V^{+}/V = \pm 5.0V, Ta = 25^{\circ}C)$

(Ta=25℃)

■ ABSOLUTE MAXIMUM RATINGS

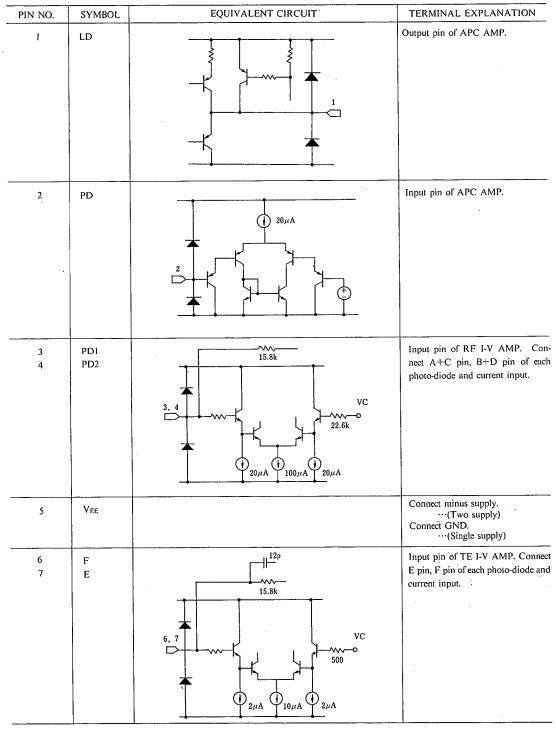
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	* V*/V	±6	v
Power Dissipation	Pp	(SSOP8) 300	mW
Operating Temperature Range	Topr	-20~+75	Ĉ
Storage Temperature Range	Tstg	-40~+125	°C

ELECTRICAL CHARACTERISTICS

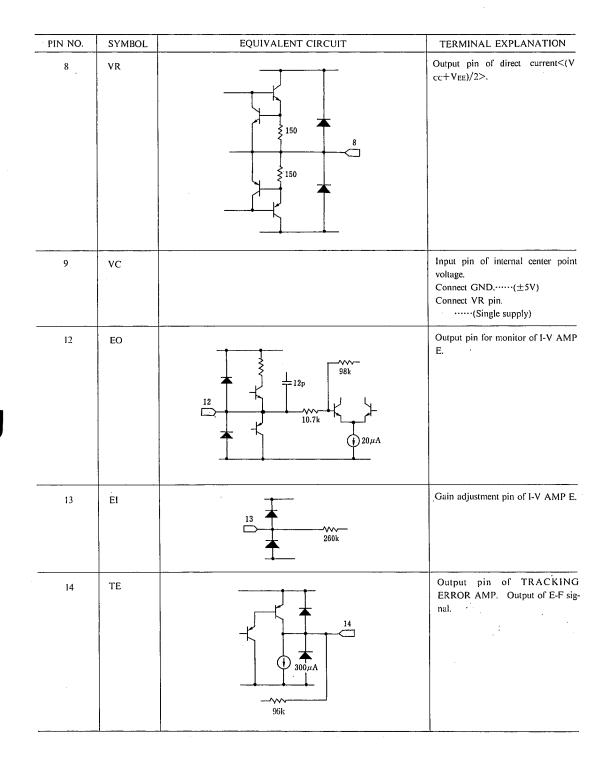

UNIT PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. Operating Current 12.0 lcc 20pin 8.0 mΑ Operating Current -12.0 -8.0lee 5pin mΑ _ <RF Amplifier> Output Offset Voltage Vool **TP17** Voltage -50 50 m٧ Voltage Gain Gy I TP3/4=2KHz, 30mVppINPUT 28.2 31.2 34.2 dB Frequency Characteristic FGv1 Frequency at Gv 1=-3dB 1.50 3.75 MHZ Maximum Output Voltage H +Vom1 TP3=0.6V 3.5 v Maximum Output Voltage L -Voml TP3=-0.6V -0.3v <FE Amplifier> Output Offset Voltage Voo2 **TP16** Voltage 0 120 mν -120 Output Noise VNOISE S3=ON TP16Noise (100KHZ LPF) 15 30 mVrms Voltage Gain 1 Gv 2-1 TP3=1KHz, 10mVppInput 39.1 42.1 45.1 dB Voltage Gain 2 Gy 2-2 TP4=1KHz, 10mVppInput 39.1 42.1 dB 45.1 Frequency Characteristic 1 FGv 2-1 Frequency at Gv 2-1 = -3dB27 KHZ Frequency Characteristic 2 FGv 2-2 Frequency at Gv 2-2=-3dB 27 кнг Difference Voltage Gain Gyp2 GvD2 = (Gv2-1) - (Gv2-2)-3.0 0 3.0 dB Maximum Output Voltage H + Vом2 TP3=0.3V 4.2 v Maximum Output Voltage L -Vом2 TP4=0.3V -2.2 v ____ <TE Amplifier> Output Offset Voltage Voo3 **TP14 Voltage** -50 0 50 m٧ Voltage Gain 1 Gy 3-1 TP6=IKHz, 100mVppInput 16.4 19.4 22.4 dB Voltage Gain 2 Gy 3-2 TP7=1KHz, 100mVppInput 19.4 16.4 22.4 dB FGy 3-1 Frequency Characteristic 1 Frequency at Gy 3-1=-3dB 34 КНZ ____ FGy 3-2 Frequency Characteristic 2 Frequency at Gv 3-2=-3dB 34 КНZ Difference Voltage Gain Gvd3 $G_{VD}3 = (G_V 3 - 1) - (G_V 3 - 2)$ -3.03.0 dB 0 Maximum Output Voltage H + Vом3 TP7=1.5V 4.2 v Maximum Output Voltage L -Vом3 TP6=1.5Vv -2.2<APC> Output Voltage 1 S₂ = 2 V1=69mV V₂ = 0.5V Vol -1.7 -0.4ν Output Voltage 2 Vo2 $S_2 = 2 V_1 = 123mV V_2 = 0.5V$ -1.0 0.3 1.6 v Output Voltage 3 Vo 3 S2 =2 V1=177mV V2 =0.5V 1.0 2.3 v S2 =2 V1=0V V2 =4.5V Output Voltage 4 Vo4 4.6 4.8[.] v Output Voltage 5 Vo 5 $S_1 = ON S_2 = 2 V_1 = 0V V_2 = 0.5V$ 2.0 v <Center Voltage Amp.> Output Voltage 6 Vo6 **TP8** Voltage -100 0 100 m٧

ELECTRICAL CHARACTERISTICS

 $(V^+/V^- = \pm 2.5V, Ta = 25^{\circ}C)$


PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	lcc	20pin	_	6.0	12.0	mA
Operating Current	IEE	5pin	-12.0	-6.0	—	mΑ
<rf amplifier=""></rf>						
Output Offset Voltage	Voo!	TP17 Voltage	50		50	mV
Voltage Gain	GvI	TP3/4=2KHz, 30mVppINPUT	28.2	31.2	34.2	dB
Maximum Output Voltage H	+Vom1	TP3=0.4V	V+0.5		-	V
Maximum Output Voltage L	-V _{OM} I	TP3=-0.4V			V ⁻ +2.2	v
<fe amplifier=""></fe>						
Output Offset Voltage	Voo2	TP16 Voltage	-120	0	120	mV
Voltage Gain 1	Gv 2-1	TP3=1KHz, 10mVpp INPUT	39.1	42.1	45.1	dB
Voltage Gain 2	Gv 2-2	TP4=1KHz, 10mVpp INPUT	39.1	42.1	45.1	dB
Difference Voltage Gain	Gvd2	$G_{VD}2=(G_V 2-1)-(G_V 2-2)$	-3.0	0	3.0	dB
Maximum Output Voltage H	+Vом2	TP3=0.3V	V+-0.5	-	-	V
Maximum Output Voltage L	-Vом2	TP4=0.3V	-	—	V-+0.5	v
<te amplifier=""></te>						
Output Offset Voltage	V003	TP14 Voltage	-50	0	50	mV
Voltage Gain 1	Gv 3-1	TP6=1KHz, 100mVpp INPUT	16.4	19.4	22.4	dB
Voltage Gain 2	Gv 3-2	TP7=1KHz, 100mVpp INPUT	16.4	19.4	22.4	dB
Difference Voltage Gain	Gvd3	$G_{VD}3=(G_{V}3-1)-(G_{V}3-2)$	-3.0	0	3.0	dB
Maximum Output Voltage H	+ Vом3	TP7=1.5V	V+-0.5	-	-	v
Maximum Output Voltage L	- Vом3	TP6=1.5V	-		V-+0.5	v
<apc></apc>						
Output Voltage 1	Vol	$S_2 = 2 V_1 = 110 mV V_2 = -20.V$		-1.6	-0.3	v
Output Voltage 2	Vo2	$S_2 = 2 V_1 = 160 mV V_2 = -20.V$	-1.1	0.2	1.5	v
Output Voltage 3	Vo 3	$S_2 = 2 V_1 = 210 mV V_2 = -20.V$	0.8	2.1		v
Output Voltage 4	Vo4	$S_2 = 2 V_1 = 0 V V_2 = -20.V$	2.1	2.3	-	v
Output Voltage 5	Vo 5	$S_1 = ON S_2 = 2 V_1 = 0V_2 = 2.0V$	-	<u> </u>	1.0	v
<center amp.="" voltage=""></center>						
Output Voltage 6	Vo6	$V_2 = -2.5V$ TP8 Voltage	-70	0	70	mV

TEST CIRCUIT



-New Japan Radio Co.,Ltd.

TERMINAL EXPLANATION

New Japan Radio Co., Ltd.-

5

5-82-

-New Japan Radio Co.,Ltd.-

PIN NO.	SYMBOL	EQUIVALENT CIRCUIT	TERMINAL EXPLANATION
15	FE-BIAS	$\begin{array}{c} VC \\ 31.6k \\ 15 \\ 164k \\ 0 \\ 20 \mu A \end{array}$	Bias adjustment pin of FOCUS ERROR AMP. (Non-inverting side)
16	FE	16 300µA 96k 25p	Output pin FOCUS ERROR AMP.
17	RFO		Output pin RF AMP.
18	RFI	13.43k 13.43k 13.43k VC 3.6k VC 3.6k	Input pin of RF AMP. (Inverting side Establish Gain of RF AMP by resis tor between RFI pin and RFO pin
19	LD ON	19 80k 8k	Change-over pin(on/0if) of APC AMP. ON…GND/OFF…Vcc
20	Vcc		Connect plus supply. (Two supply Connect Vcc. (Single supply

-New Japan Radio Co.,Ltd.-

-5-83

RF AMP

5

RFO-OUTPUT

 $V_{\text{RFO}} = (i\text{PD1} + i\text{PD2})(\text{A}) \times 111(k\Omega) \times \frac{22(k\Omega)}{13.43(k\Omega)}$

= $181.8(k\Omega) \times (iPD1 + iPD2)(A)$

Establish Gain of RF AMP by resistor (22k Ω) between RFI pin and RFO pin.

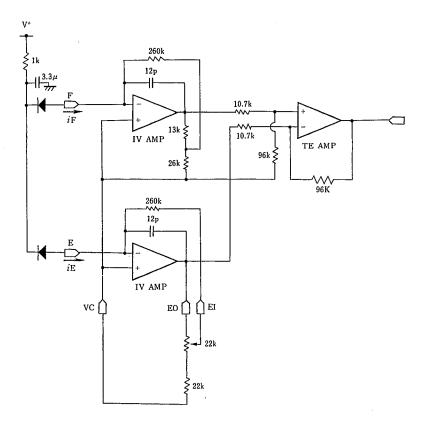
FE AMP

FE OUTPUT

 $V_{FE} = (iPD1 - iPD2)(A) \times III(k\Omega) \times \frac{174(k\Omega)}{15.1 (k\Omega)}$

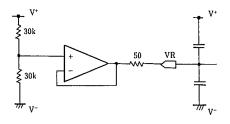
= $1279(k\Omega) \times (iPD1 - iPD2)(A)$

It is possible to controll FE Output Offset by variable resistor with FE BIAS pin.


TE AMP

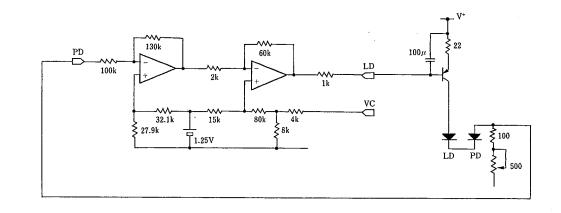
TE OUTPUT

 $V_{TE} = (iE - iF)(A) \times 403(k\Omega) \times \frac{96(k\Omega)}{10.7(k\Omega)}$

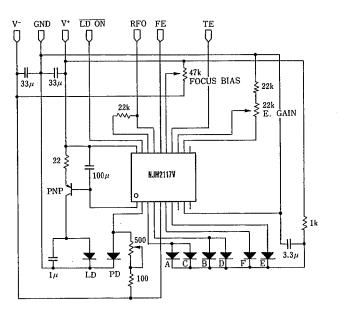

=3616 $(k\Omega) \times (iE - iF)(A)$

It is possible to trim I-V Gain by resistor with ED pin.

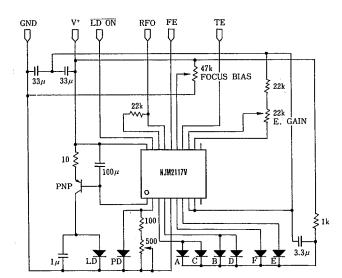
New Japan Radio Co., Ltd.


CENTER VOLTAGE GENERATION CIRCUIT

APC CIRCUIT

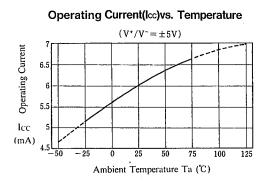

5

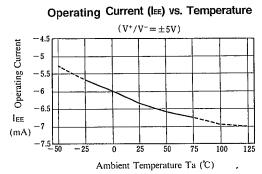
LD ON pin: connect to GND…APC (Auto Power Controll) ON connect to V+…APC (") OFF



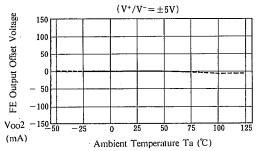
TYPICAL APPLICATION

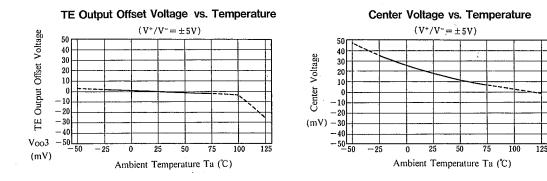
1) $\pm 5V$ (TWO SUPPLY VOLTAGE)




2) +5V (SINGLE SUPPLY VOLTAGE)

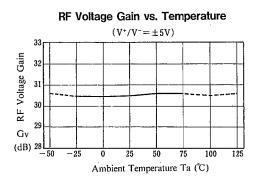
-New Japan Radio Co.,Ltd.-

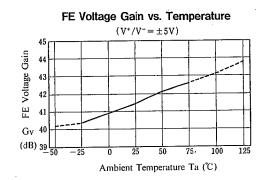

TYPICAL CHARACTERISTICS



RF Output Offset Voltage vs. Temperature $(V^{+}/V^{-} = \pm 5V)$ RF Output Offset Voltage 50 40 30 20 10 0 -10° -20-30 -40 - 5<u>0 - 50</u> Vool -25 ō 25 50 75 100 125 (mV) Ambient Temperature Ta (°C)

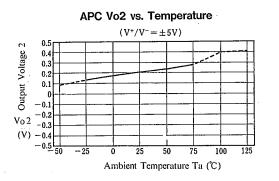
FE Output Offset Voltage vs. Temperature

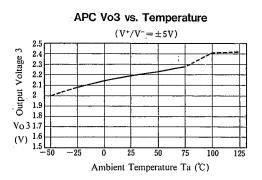


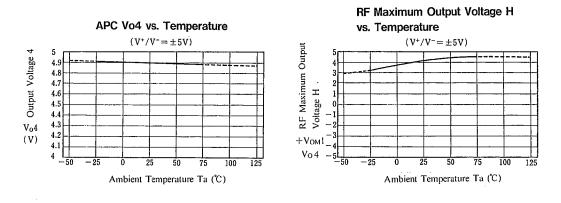


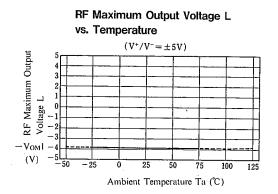
5

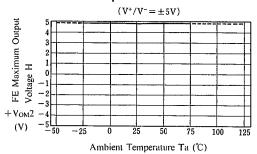
-New Japan Radio Co.,Ltd.-

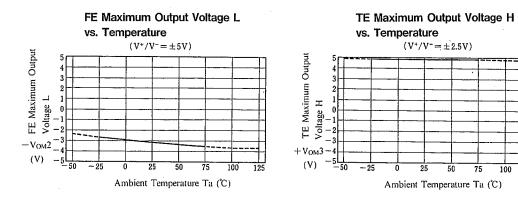

TYPICAL CHARACTERISTICS




TE Voltage Gain vs. Temperature $(V^+/V^- = \pm 5V)$ 23 TE Voltage Gain 22 21 20 19 Gv 18 (dB) 1<u>7 50</u> 50 75 100 125 Ambient Temperature Ta (℃)

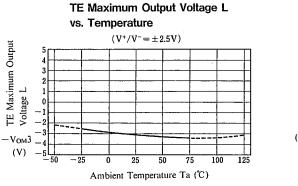

APC Vol vs. Temperature $(V^+/V^- = \pm 5V)$ -1 -1-1.1 -1.2 -1.3 -1.4 Output Voltage -1.5 -1.6 -1.7 Vol -1.8 -1.9 (V) -2- 25 0 25 50 75 100 125 Ambient Temperature Ta (°C)


TYPICAL CHARACTERISTICS



FE Maximum Output Voltage H vs. Temperature

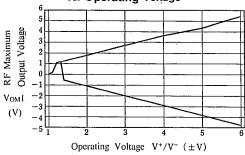
125

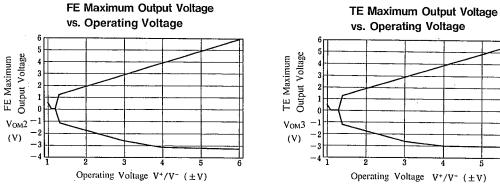


5-90

5

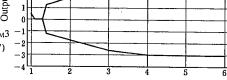
TYPICAL CHARACTERISTICS

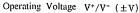

Operating Current(Icc) vs. Operating Voltage C Operating Current (mA) Ð 3 4 6 Operating Voltage V^+/V^- (±V)


vs. Operating Voltage Operating Current lee (mA) 3 2 4 5 հ

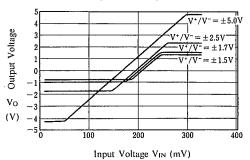
Operating Current(IEE)

Operating Voltage V⁺/V⁻ (\pm V)


RF Maximum Output Voltage vs. Operating Voltage



-New Japan Radio Co.,Ltd.-


vs. Operating Voltage

5-91

TYPICAL CHARACTERISTICS

APC Input vs. Output Voltage

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.